Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 509(7499): 230-4, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24739967

RESUMEN

Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection.


Asunto(s)
Extensiones de la Superficie Celular/microbiología , Listeria monocytogenes/fisiología , Fagocitosis , Actinas/metabolismo , Animales , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/microbiología , Membrana Celular/patología , Extensiones de la Superficie Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/microbiología , Femenino , Células HeLa , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Listeria monocytogenes/patogenicidad , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Fagosomas/metabolismo , Fagosomas/microbiología , Fosfatidilserinas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología
2.
Cell Microbiol ; 20(10): e12938, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30010242

RESUMEN

Salmonella uses Type 3 secretion systems (T3SSs) to deliver virulence factors, called effectors, into host cells during infection. The T3SS effectors promote invasion into host cells and the generation of a replicative niche. SopB is a T3SS effector that plays an important role in Salmonella pathogenesis through its lipid phosphatase activity. Here, we show that SopB mediates the recruitment of Rho GTPases (RhoB, RhoD, RhoH, and RhoJ) to bacterial invasion sites. RhoJ contributes to Salmonella invasion, and RhoB and RhoH play an important role in Akt activation. R-Ras1 also contributes to SopB-dependent Akt activation by promoting the localised production of PI(3,4)P2 /PI(3,4,5)P3 . Our studies reveal new signalling factors involved in SopB-dependent Salmonella infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Salmonella/patología , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Línea Celular Tumoral , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Salmonella/microbiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
3.
Nature ; 451(7176): 350-4, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202661

RESUMEN

Listeria monocytogenes is an intracellular bacterial pathogen that replicates rapidly in the cytosol of host cells during acute infection. Surprisingly, these bacteria were found to occupy vacuoles in liver granuloma macrophages during persistent infection of severe combined immunodeficient (SCID) mice. Here we show that L. monocytogenes can replicate in vacuoles within macrophages. In livers of SCID mice infected for 21 days, we observed bacteria in large LAMP1(+) compartments that we termed spacious Listeria-containing phagosomes (SLAPs). SLAPs were also observed in vitro, and were found to be non-acidic and non-degradative compartments that are generated in an autophagy-dependent manner. The replication rate of bacteria in SLAPs was found to be reduced compared to the rate of those in the cytosol. Listeriolysin O (LLO, encoded by hly), a pore-forming toxin essential for L. monocytogenes virulence, was necessary and sufficient for SLAP formation. A L. monocytogenes mutant with low LLO expression was impaired for phagosome escape but replicated slowly in SLAPs over a 72 h period. Therefore, our studies reveal a role for LLO in promoting L. monocytogenes replication in vacuoles and suggest a mechanism by which this pathogen can establish persistent infection in host macrophages.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/patogenicidad , Macrófagos/citología , Macrófagos/microbiología , Vacuolas/microbiología , Animales , Autofagia , Toxinas Bacterianas/genética , Enfermedad Crónica , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas/genética , Listeria monocytogenes/metabolismo , Listeriosis/microbiología , Listeriosis/patología , Hígado/microbiología , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones SCID , Fagosomas/metabolismo , Fagosomas/microbiología , Vacuolas/metabolismo , Virulencia
4.
Cell Microbiol ; 13(11): 1812-23, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21824248

RESUMEN

The facultative intracellular pathogen Salmonella enterica serovar Typhimurium establishes a replicative niche, the Salmonella-containing vacuole (SCV), in host cells. Here we demonstrate that these bacteria exploit the function of Arl8B, an Arf family GTPase, during infection. Following infection, Arl8B localized to SCVs and to tubulated endosomes that extended along microtubules in the host cell cytoplasm. Arl8B(+) tubules partially colocalized with LAMP1 and SCAMP3. Formation of LAMP1(+) tubules (the Salmonella-induced filaments phenotype; SIFs) required Arl8B expression. SIFs formation is known to require the activity of kinesin-1. Here we find that Arl8B is required for kinesin-1 recruitment to SCVs. We have previously shown that SCVs undergo centrifugal movement to the cell periphery at 24 h post infection and undergo cell-to-cell transfer to infect neighbouring cells, and that both phenotypes require kinesin-1 activity. Here we demonstrate that Arl8B is required for migration of the SCV to the cell periphery 24 h after infection and for cell-to-cell transfer of bacteria to neighbouring cells. These results reveal a novel host factor co-opted by S. Typhimurium to manipulate the host endocytic pathway and to promote the spread of infection within a host.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Endosomas/metabolismo , Endosomas/microbiología , Cinesinas/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Microscopía Confocal , Microscopía Fluorescente
5.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16554755

RESUMEN

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Asunto(s)
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Evolución Biológica , Secuencia Conservada , Espectrometría de Masas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteoma/química , Proteómica , Proteínas de Saccharomyces cerevisiae/química
6.
Proc Natl Acad Sci U S A ; 106(15): 6226-31, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19339495

RESUMEN

Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcgamma receptors (FcgammaRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy.


Asunto(s)
Autofagia/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , NADPH Oxidasas/metabolismo , Salmonella typhimurium/inmunología , Animales , Línea Celular , Células Epiteliales/citología , Células Epiteliales/enzimología , Humanos , Ratones , NADPH Oxidasas/genética , Fagosomas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de IgG/inmunología , Transducción de Señal/inmunología
7.
Nature ; 433(7025): 531-7, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15690043

RESUMEN

Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames (approximately 23% of the genome). A total of 857 proteins, including 198 of the most highly conserved, soluble non-ribosomal proteins essential in at least one bacterial species, were tagged successfully, whereas 648 could be purified to homogeneity and their interacting protein partners identified by mass spectrometry. An interaction network of protein complexes involved in diverse biological processes was uncovered and validated by sequential rounds of tagging and purification. This network includes many new interactions as well as interactions predicted based solely on genomic inference or limited phenotypic data. This study provides insight into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.


Asunto(s)
Secuencia Conservada , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Genes Esenciales , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Alelos , Biología Computacional , Secuencia Conservada/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Evolución Molecular , Genes Bacterianos/genética , Genes Esenciales/genética , Genómica , Espectrometría de Masas , Complejos Multiproteicos/genética , Complejos Multiproteicos/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Filogenia , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados
8.
Mol Cell Biol ; 23(12): 4207-18, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12773564

RESUMEN

Set2 methylates Lys36 of histone H3. We show here that yeast Set2 copurifies with RNA polymerase II (RNAPII). Chromatin immunoprecipitation analyses demonstrated that Set2 and histone H3 Lys36 methylation are associated with the coding regions of several genes that were tested and correlate with active transcription. Both depend, as well, on the Paf1 elongation factor complex. The C terminus of Set2, which contains a WW domain, is also required for effective Lys36 methylation. Deletion of CTK1, encoding an RNAPII CTD kinase, prevents Lys36 methylation and Set2 recruitment, suggesting that methylation may be triggered by contact of the WW domain or C terminus of Set2 with Ser2-phosphorylated CTD. A set2 deletion results in slight sensitivity to 6-azauracil and much less beta-galactosidase produced by a reporter plasmid, resulting from a defect in transcription. In synthetic genetic array (SGA) analysis, synthetic growth defects were obtained when a set2 deletion was combined with deletions of all five components of the Paf1 complex, the chromodomain elongation factor Chd1, the putative elongation factor Soh1, the Bre1 or Lge1 components of the histone H2B ubiquitination complex, or the histone H2A variant Htz1. SET2 also interacts genetically with components of the Set1 and Set3 complexes, suggesting that Set1, Set2, and Set3 similarly affect transcription by RNAPII.


Asunto(s)
Histonas/metabolismo , Metilación , Metiltransferasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Uracilo/análogos & derivados , Cromatina/metabolismo , Eliminación de Gen , Inmunoglobulina G/metabolismo , Lisina/química , Modelos Biológicos , Modelos Genéticos , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Uracilo/farmacología , beta-Galactosidasa/metabolismo
9.
Mol Cell Biol ; 24(16): 7043-58, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15282305

RESUMEN

We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Mutación , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , ARN Polimerasa II/aislamiento & purificación , ARN Polimerasa II/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/genética , ADN/metabolismo , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosfoproteínas Fosfatasas/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Subunidades de Proteína/genética , ARN Polimerasa II/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/aislamiento & purificación , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/aislamiento & purificación , Factores de Transcripción TFII/metabolismo , Transcripción Genética
10.
PLoS One ; 8(8): e71015, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990921

RESUMEN

SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.


Asunto(s)
Interacciones Huésped-Patógeno , Fosfotransferasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Salmonella/enzimología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Androstadienos/farmacología , Animales , Proteínas Bacterianas/metabolismo , Cromonas/farmacología , Fibroblastos/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Células HeLa , Humanos , Ratones , Morfolinas/farmacología , Oligonucleótidos/química , Fosforilación , Plásmidos/metabolismo , Wortmanina
11.
Virology ; 388(1): 103-11, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19339032

RESUMEN

The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.


Asunto(s)
Proteínas/metabolismo , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Sistema Libre de Células , Cromatografía de Afinidad , Células HeLa , Humanos , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , ARNt Metiltransferasas
12.
Autophagy ; 3(5): 442-51, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17568179

RESUMEN

Listeria monocytogenes is an intracellular pathogen that is able to colonize the cytosol of macrophages. Here we examined the interaction of this pathogen with autophagy, a host cytosolic degradative pathway that constitutes an important component of innate immunity towards microbial invaders. L. monocytogenes infection induced activation of the autophagy system in macrophages. At 1 h post infection (p.i.), a population of intracellular bacteria ( approximately 37%) colocalized with the autophagy marker LC3. These bacteria were within vacuoles and were targeted by autophagy in an LLO-dependent manner. At later stages in infection (by 4 h p.i.), the majority of L. monocytogenes escaped into the cytosol and rapidly replicated. At these times, less than 10% of intracellular bacteria colocalized with LC3. We found that ActA expression was sufficient to prevent autophagy of bacteria in the cytosol of macrophages. Surprisingly, ActA expression was not strictly necessary, indicating that other virulence factors were involved. Accordingly, we also found a role for the bacterial phospholipases, PI-PLC and PC-PLC, in autophagy evasion, as bacteria lacking phospholipase expression were targeted by autophagy at later times in infection. Together, our results demonstrate that L. monocytogenes utilizes multiple mechanisms to avoid destruction by the autophagy system during colonization of macrophages.


Asunto(s)
Autofagia/fisiología , Listeria monocytogenes/patogenicidad , Macrófagos/microbiología , Macrófagos/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Toxinas Bacterianas , Línea Celular , Genes Bacterianos , Proteínas de Choque Térmico/fisiología , Proteínas Hemolisinas/fisiología , Listeria monocytogenes/genética , Listeria monocytogenes/fisiología , Macrófagos/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Microscopía Electrónica de Transmisión , Modelos Biológicos , Mutación , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/fisiología , Fosfolipasas de Tipo C/fisiología , Virulencia
13.
Autophagy ; 2(3): 189-99, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16874109

RESUMEN

Misfolded proteins can be directed into cytoplasmic aggregates such as aggresomes and dendritic cell aggresome-like induced structures (DALIS). DALIS were originally identified in lipopolysaccharide-stimulated dendritic cells and act as storage compartments for polyubiquitinated Defective Ribosomal Products (DRiPs) prior to their clearance by the proteasome. Here we demonstrate that ubiquitinated protein aggregates that are similar to DALIS, and not related to aggresomes, can be observed in several cell types in response to stress, including oxidative stress, transfection, and starvation. Significantly, both immune and nonimmune cells could form these aggresome-like induced structures (ALIS). Protein synthesis was essential for ALIS formation in response to oxidative stress, indicating that DRiP formation was required. Furthermore, puromycin, which increases DRiP formation, was sufficient to induce ALIS formation. Inhibition of either proteasomes or of autophagy interfered with ALIS clearance in puromycin treated cells. Autophagy inhibition enhanced ALIS formation under a variety of stress conditions. During starvation, ALIS formation in autophagy-deficient cells was only partially inhibited by protein synthesis inhibitors, indicating that both long-lived proteins and DRiPs can be targeted to ALIS. Together, these findings demonstrate that ALIS act as generalized stress-induced protein storage compartments for substrates of the proteasome and autophagy.


Asunto(s)
Autofagia/fisiología , Compartimento Celular/fisiología , Cuerpos de Inclusión/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Transporte de Proteínas/fisiología , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Cuerpos de Inclusión/metabolismo , Macrófagos/metabolismo , Ratones , Modelos Biológicos , Proteínas/metabolismo , Ratas , Estrés Fisiológico/metabolismo , Células Tumorales Cultivadas , Ubiquitina/metabolismo
14.
J Immunol ; 174(5): 2471-5, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15728449

RESUMEN

In response to a maturation stimulus, dendritic cells undergo the formation of ubiquitinated protein aggregates known as dendritic cell aggresome-like induced structures (DALIS). DALIS are thought to act as Ag storage structures, allowing for the prioritized degradation of proteins during infection. In this study, we demonstrate that murine macrophages can also form ubiquitinated protein aggregates that are indistinguishable from DALIS. These were formed in a dose- and time-dependent manner, and in response to a variety of microbial products. Surprisingly, the proteasome did not accumulate on these ubiquitinated protein structures, further underlining the difference between DALIS and aggresomes. Our studies suggest that DALIS formation is important for the function of Ag-presenting immune cells during infection.


Asunto(s)
Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Animales , Células Presentadoras de Antígenos/enzimología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/microbiología , Línea Celular , Células Cultivadas , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Células HeLa , Humanos , Listeria monocytogenes/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , Microscopía Confocal , Microscopía Fluorescente , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Salmonella typhimurium/inmunología , Transfección , Ubiquitina/genética , Ubiquitina/metabolismo
15.
J Biol Chem ; 278(35): 33000-10, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12819204

RESUMEN

Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF. Systematic tagging and purification of holo-CPF subunits revealed that yeast extracts contain similar amounts of CPF and holo-CPF. By purifying holo-CPF from strains lacking Ref2 or containing truncated subunits, subcomplexes were isolated that revealed additional aspects of the architecture of APT and holo-CPF. Chromatin immunoprecipitation was used to localize Ref2, Ssu72, Pta1, and other APT subunits on small nucleolar RNA (snoRNA) genes and primarily near the polyadenylation signals of the constitutively expressed PYK1 and PMA1 genes. Use of mutant components of APT revealed that Ssu72 is important for preventing readthrough-dependent expression of downstream genes for both snoRNAs and polyadenylated transcripts. Ref2 and Pta1 similarly affect at least one snoRNA transcript.


Asunto(s)
Proteínas Portadoras/química , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN Recombinante/metabolismo , Electroforesis en Gel de Poliacrilamida , Modelos Biológicos , Péptidos/química , Fosfoproteínas Fosfatasas/metabolismo , Poliadenilación , Pruebas de Precipitina , Unión Proteica , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae , Transcripción Genética , beta-Galactosidasa/metabolismo
16.
J Proteome Res ; 3(3): 463-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15253427

RESUMEN

A vector system is described that combines reliable, very low level, regulated protein expression in human cells with two affinity purification tags (Sequential Peptide Affinity, or SPA, system). By avoiding overproduction of the target protein, this system allows for the efficient purification of natural protein complexes and their identification by mass spectrometry. We also present an adaptation of the SPA system for the efficient purification and identification of protein complexes in E. coli and, potentially, other bacteria.


Asunto(s)
Complejos Multiproteicos/genética , Plásmidos/genética , Proteínas Recombinantes/genética , Factores de Transcripción TFII/metabolismo , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Técnica del Anticuerpo Fluorescente , Humanos , Espectrometría de Masas , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/fisiología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/aislamiento & purificación
17.
Mol Cell ; 13(2): 225-39, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14759368

RESUMEN

A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Northern Blotting , Proteínas Fúngicas/química , Espectrometría de Masas , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Factores de Tiempo
18.
Mol Cell ; 12(6): 1565-76, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14690608

RESUMEN

Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three encoded components of a novel 13 protein complex, SWR-C, containing the Snf2 family ATPase, Swr1. The SWR-C also copurified with Htz1 and Bdf1, a TFIID-interacting protein that recognizes acetylated histone tails. Deletions of the genes encoding Htz1 and seven nonessential SWR-C components caused a similar spectrum of synthetic growth defects when combined with deletions of 384 genes involved in transcription, suggesting that Htz1 and SWR-C belong to the same pathway. We show that recruitment of Htz1 to chromatin requires the SWR-C. Moreover, like Htz1 and Bdf1, the SWR-C promotes gene expression near silent heterochromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos , ADN Helicasas , Proteínas de Unión al ADN/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Fúngicos , Histonas/genética , Humanos , Sustancias Macromoleculares , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo
19.
Cell ; 113(7): 919-33, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12837249

RESUMEN

Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Genoma Fúngico , Mutación/genética , ARN no Traducido/biosíntesis , Ribonucleoproteínas/biosíntesis , Levaduras/metabolismo , Células Cultivadas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Precursores del ARN/biosíntesis , Precursores del ARN/genética , ARN Nucleolar Pequeño/biosíntesis , ARN Nucleolar Pequeño/genética , ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , ARN no Traducido/genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA