Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Am Chem Soc ; 145(32): 17945-17953, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530628

RESUMEN

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.


Asunto(s)
Mercurio , Plata , Emparejamiento Base , Plata/química , ADN/química , Mercurio/química
2.
Small ; 19(3): e2205830, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408817

RESUMEN

The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson-Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson-Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter.


Asunto(s)
ADN , Nanotecnología , Conformación de Ácido Nucleico , ADN/química , Emparejamiento Base
3.
Biophys J ; 121(24): 4759-4765, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36004779

RESUMEN

In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.


Asunto(s)
ADN , Nanotecnología , Conformación de Ácido Nucleico , ADN/química , Emparejamiento Base
4.
Phys Chem Chem Phys ; 24(12): 7531-7538, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35290424

RESUMEN

Nuclear spin singlet states are often found to allow long-lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and ab initio calculations can be used to fully account for the experimentally observed proton singlet lifetimes in ethyl-d5-propyl-d7-maleate in deuterated chloroform as solvent. The correspondence between experiment and simulations is achieved without adjustable parameters. These studies highlight the importance of considering unusual and difficult-to-control mechanisms, such as dipolar couplings to low-gamma solvent nuclei, and to residual paramagnetic species, which often can represent lifetime limiting factors. These results also point to the power of molecular dynamics simulations to provide insights into little-known NMR relaxation mechanisms.

5.
Angew Chem Int Ed Engl ; 61(5): e202115155, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34847266

RESUMEN

A quasi-one-dimensional organic semiconductor, hepta(p-phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self-assembled from an HPV-DNA pseudo-rhombohedron edge by rational design and characterized by X-ray diffraction. Templated by the DNA motif, HPV molecules exist as single-molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV-DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.

6.
Anal Chem ; 93(29): 10090-10098, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34269045

RESUMEN

Peroxynitrite, a transient reactive oxygen species (ROS), is believed to play a deleterious role in physiological processes. Herein, we report a two-photon ratiometric fluorescent probe that selectively reacts with peroxynitrite yielding a >200-fold change upon reaction. The probe effectively visualized fluctuations in peroxynitrite generation by arginase 1 in vivo and in vitro. This provides evidence that arginase 1 is a critical regulator of peroxynitrite.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Arginasa , Fotones , Especies Reactivas de Oxígeno
7.
J Am Chem Soc ; 141(30): 11923-11928, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31282152

RESUMEN

Single-wall carbon nanotubes (SWCNTs) are known to embody many desirable features for nanoelectronic and photonic applications, including excellent electronic and optical properties and mechanical robustness. To utilize these species in a bottom-up nanotechnological approach, it is necessary to be able to place them in precise absolute positions within a larger framework, without disturbing the conduction surface. Although it is well-known how to orient one or two nanotubes on a DNA origami, precise placement has eluded investigators previously. Here, we report a method of attaching a strand of DNA on the reactive end of a SWCNT, and then of using that DNA strand to place the nanotube at a specific site on a 2D DNA origami raft. We demonstrate that it is possible to place one or two nanotubes on such a DNA origami raft.


Asunto(s)
ADN/química , Nanotecnología , Nanotubos de Carbono/química
8.
Phys Chem Chem Phys ; 21(5): 2595-2600, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30657502

RESUMEN

The examination and optimized preparation of nuclear spin singlet order has enabled the development of new types of applications that rely on potentially long-term polarization storage. Lifetimes several orders of magnitude longer than T1 have been observed. The efficient creation of such states relies on special pulse sequences. The extreme cases of very large and very small magnetic equivalence received primary attention, while relatively little effort has been directed towards studying singlet relaxation in the intermediate regime. The intermediate case is of interest as it is relevant for many spin systems, and would also apply to heteronuclear systems in very low magnetic fields. Experimental evidence for singlet-triplet leakage in the intermediate regime is sparse. Here we describe a pulse sequence for efficiently creating singlets in the intermediate regime in a broad-band fashion. Singlet lifetimes are studied with a specially synthesized molecule over a wide range of magnetic fields using a home-built sample-lift apparatus. The experimental results are supplemented with spin simulations using parameters obtained from ab initio calculations. This work indicates that the chemical shift anisotropy (CSA) mechanism is relatively weak compared to singlet-triplet leakage for the proton system observed over a large magnetic field range. These experiments provide a mechanism for expanding the scope of singlet NMR to a larger class of molecules, and provide new insights into singlet lifetime limiting factors.

9.
Nano Lett ; 18(3): 2112-2115, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29430930

RESUMEN

An electro-optical modulator was constructed using a DNA nanostructure scaffold with oligomers of poly(phenylenevinylene) and polyaniline. A molecular device containing one each of the functional molecules was assembled in a DNA origami. The constructs formed an "X" shape and were visualized by atomic force microscopy. In response to redox reconfiguration, the device reversibly altered fluorescence signal output. This molecular self-assembly strategy provides opportunities to make unique material composites that are difficult to achieve by blending. The strategy offers a "plug and play" format that may lead to many new functions.


Asunto(s)
Compuestos de Anilina/química , ADN/química , Nanoestructuras/química , Polivinilos/química , Semiconductores , Conductividad Eléctrica , Diseño de Equipo , Nanoestructuras/ultraestructura , Dispositivos Ópticos
10.
Nucleic Acids Res ; 43(15): 7201-6, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26184876

RESUMEN

PX-DNA is a four-stranded DNA structure that has been implicated in the recognition of homology, either continuously, or in an every-other-half-turn fashion. Some of the structural features of the molecule have been noted previously, but the structure requires further characterization. Here, we report atomic force microscopic characterization of PX molecules that contain periodically placed biotin groups, enabling the molecule to be labeled by streptavidin molecules at these sites. In comparison with conventional double stranded DNA and with antiparallel DNA double crossover molecules, it is clear that PX-DNA is a more dynamic structure. Furthermore, the spacing between the nucleotide pairs along the helix axis is shorter, suggesting a mixed B/A structure. Circular dichroism spectroscopy indicates unusual features in the PX molecule that are absent in both the molecules to which it is compared.


Asunto(s)
ADN/química , Dicroismo Circular , ADN/ultraestructura , ADN Forma B/química , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación de Ácido Nucleico
11.
Angew Chem Int Ed Engl ; 56(23): 6445-6448, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28466984

RESUMEN

A 3D array of organic semiconductors was assembled using a DNA scaffold. An octameric aniline molecule ("octaniline") was incorporated into a DNA building block based on a dimeric tensegrity triangle. The construct self-assembled to form a 3D crystal. Reversible redox conversion between the pernigraniline and leucoemeraldine states of the octaniline is retained in the crystal. Protonic doping gave emeraldine salt at pH 5, corresponding to the conductive form of polyaniline. Redox cycling within the crystal was visualized by color changes and Raman microscopy. The ease of conversion between the octaniline states suggests that it is a viable electronic switch within a unique 3D structure.

12.
Chemphyschem ; 17(19): 2967-2971, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27460052

RESUMEN

The synthesis of a hyperpolarized molecule was developed, where the polarization and the singlet state were preserved over two controlled chemical steps. Nuclear singlet-state lifetimes close to 6 min for protons are reported in dimethyl fumarate. Owing to the high symmetry (AA'X3 X3 ' and A2 systems), the singlet-state readout requires either a chemical desymmetrization or a long and repeated spin lock. Using DFT calculations and relaxation models, we further determine nuclear spin singlet lifetime limiting factors, which include the intramolecular dipolar coupling mechanism (proton-proton and proton-deuterium), the chemical shift anisotropy mechanism (symmetric and antisymmetric), and the intermolecular dipolar coupling mechanism (to oxygen and deuterium). If the limit of paramagnetic relaxation caused by residual oxygen could be lifted, the intramolecular dipolar coupling to deuterium would become the limiting relaxation mechanism and proton lifetimes upwards of 26 min could become available in the molecules considered here (dimethyl maleate and dimethyl fumarate).

13.
Bioorg Med Chem Lett ; 24(5): 1290-3, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24513050

RESUMEN

Nanometer-scale architectures assembled on cell surface receptors from smaller macromolecular constituents generated a large amplification of fluorescence. A targeted dendrimer was synthesized from a cystamine-core G4 PAMAM dendrimer, and contained an anti-BrE3 monoclonal antibody as the targeting group, several fluorophores and an average of 12 aldehyde moieties as complementary bio-orthogonal reactive sites for the covalent assembly. A cargo dendrimer, derived from a PAMAM G4 dendrimer, contained several fluorophores as the cargo for delivery and five hydrazine moieties as complimentary bio-orthogonal reactive sites. The system is designed to be flexible and allow for facile incorporation of a variety of targeting ligands.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Nylons/química , Receptores de Superficie Celular/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Receptores de Superficie Celular/química , Rodaminas/química , Rodaminas/metabolismo
14.
Org Biomol Chem ; 12(44): 8823-7, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25283556

RESUMEN

We describe two DNA-templated ligation strategies: native chemical ligation (NCL), and thiol-disulfide exchange. Both systems result in successful ligation in the presence of a DNA template. The stability of the product from the NCL reaction relies on exogenous thiol, while the thiol-disulfide reaction proceeds in a catalyst-free manner.


Asunto(s)
ADN/química , Compuestos de Sulfhidrilo/química , Disulfuros/química , Estructura Molecular
15.
Angew Chem Int Ed Engl ; 53(13): 3396-9, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24623618

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) have become important techniques in many research areas. One major limitation is the relatively low sensitivity of these methods, which recently has been addressed by hyperpolarization. However, once hyperpolarization is imparted on a molecule, the magnetization typically decays within relatively short times. Singlet states are well isolated from the environment, such that they acquire long lifetimes. We describe herein a model reaction for read-out of a hyperpolarized long-lived state in dimethyl maleate using thiol conjugate addition. This type of reaction could lend itself to monitoring oxidative stress or hypoxia by sensitive detection of thiols. Similar reactions could be used in biosensors or assays that exploit molecular switching. Singlet lifetimes of about 4.7 min for (1)H spins in [D4]MeOH are seen in this system.

16.
Adv Mater ; 35(29): e2210938, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268326

RESUMEN

DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.


Asunto(s)
ADN , Metales , Metales/química , ADN/química , Emparejamiento Base , Pirimidinas/química , Nanotecnología , Conformación de Ácido Nucleico
17.
Adv Mater ; : e2201938, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939292

RESUMEN

DNA double helices containing metal-mediated DNA (mmDNA) base pairs have been constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials has been impractical without a complete lexical and structural description. Here, we explore the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination. We employed the tensegrity triangle to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and elucidated generalized design rules for mmDNA construction. We uncovered two binding modes: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations showed additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates. This article is protected by copyright. All rights reserved.

18.
J Am Chem Soc ; 134(19): 8054-7, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22551457

RESUMEN

A redox-reconfigurable catalyst derived from L-methionine and incorporating catalytic urea groups has been synthesized. This copper complex catalyzes the enantioselective addition of diethyl malonate to trans-ß-nitrostyrene. Either enantiomer of the product can be predetermined by selection of the oxidation state of the copper ion. Enantiomeric excesses of up to 72% (S) and 70% (R) were obtained in acetonitrile. The ability of the catalyst to invert enantiomeric preference was reproduced with several different solvents and bases. Facile interconversion between the Cu(2+) and Cu(+) redox states allowed easy access to both active helical forms of the complex and, therefore, dial-in enantioselectivity.

19.
Bioconjug Chem ; 23(12): 2329-34, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23185966

RESUMEN

Pyridoxal-5'-phosphate (PLP) represents an active form of Vitamin B(6) that shows relatively fast imine formation with hydrazines under physiological conditions without the need of a catalyst. A convenient phosphate/amine conjugation protocol was developed to covalently link PLP to proteins, affording proteins capable of hydrazone formation with bioorthogonal hydrazinyl functional groups. Thus, the lectin Concanavalin A (Con A) was labeled with PLP. Pretreatment with fluorescein hydrazide gave dye-labeled Con A that labeled cell surfaces efficiently. Alternatively, pretargeting was achieved by labeling cells with Con A-PLP, then treatment in vitro with Alexa Fluor 488 hydrazide.


Asunto(s)
Concanavalina A/química , Hidrazonas/síntesis química , Fosforamidas/síntesis química , Fosfato de Piridoxal/química , Coloración y Etiquetado/métodos , Línea Celular , Células Epiteliales/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Hidrazinas/química , Indicadores y Reactivos/química , Estructura Molecular
20.
Chemistry ; 18(26): 8064-9, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22592912

RESUMEN

The association between an achiral copper(II)-containing host 1 and chiral carboxylates has been expanded beyond previous studies to new chiral carboxylate guests, both α-amino acids and ß-homoamino acids. The observed exciton-coupled circular dichroism (ECCD) signals for the enantiomers of each carboxylate were equal and opposite, and these signals differed in size and shape between the individual amino acids. Linear discriminant analysis (LDA) was applied as a statistical analysis technique to differentiate the amino acids, both enantioselectively and chemoselectively, giving the absolute configuration and identity of the amino acid. The identity of each of the α-amino acids and ß-homoamino acids were determined independently by LDA, and then the two were considered together. Each of these analyses showed good differentiation of the amino acid guests with the use of only one host molecule.


Asunto(s)
Aminoácidos/química , Ácidos Carboxílicos/química , Cobre/química , Compuestos Organometálicos/química , Dicroismo Circular , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA