Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Imaging ; 8(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448210

RESUMEN

Artificial intelligence (AI) is expected to have a major effect on radiology as it demonstrated remarkable progress in many clinical tasks, mostly regarding the detection, segmentation, classification, monitoring, and prediction of diseases. Generative Adversarial Networks have been proposed as one of the most exciting applications of deep learning in radiology. GANs are a new approach to deep learning that leverages adversarial learning to tackle a wide array of computer vision challenges. Brain radiology was one of the first fields where GANs found their application. In neuroradiology, indeed, GANs open unexplored scenarios, allowing new processes such as image-to-image and cross-modality synthesis, image reconstruction, image segmentation, image synthesis, data augmentation, disease progression models, and brain decoding. In this narrative review, we will provide an introduction to GANs in brain imaging, discussing the clinical potential of GANs, future clinical applications, as well as pitfalls that radiologists should be aware of.

2.
Updates Surg ; 74(1): 235-243, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34596836

RESUMEN

Clinically relevant postoperative pancreatic fistula (CR-POPF) is a life-threatening complication following pancreaticoduodenectomy (PD). Individualized preoperative risk assessment could improve clinical management and prevent or mitigate adverse outcomes. The aim of this study is to develop a machine learning risk model to predict occurrence of CR-POPF after PD from preoperative computed tomography (CT) scans. A total of 100 preoperative high-quality CT scans of consecutive patients who underwent pancreaticoduodenectomy in our institution between 2011 and 2019 were analyzed. Radiomic and morphological features extracted from CT scans related to pancreatic anatomy and patient characteristics were included as variables. These data were then assessed by a machine learning classifier to assess the risk of developing CR-POPF. Among the 100 patients evaluated, 20 had CR-POPF. The predictive model based on logistic regression demonstrated specificity of 0.824 (0.133) and sensitivity of 0.571 (0.337), with an AUC of 0.807 (0.155), PPV of 0.468 (0.310) and NPV of 0.890 (0.084). The performance of the model minimally decreased utilizing a random forest approach, with specificity of 0.914 (0.106), sensitivity of 0.424 (0.346), AUC of 0.749 (0.209), PPV of 0.502 (0.414) and NPV of 0.869 (0.076). Interestingly, using the same data, the model was also able to predict postoperative overall complications and a postoperative length of stay over the median with AUCs of 0.690 (0.209) and 0.709 (0.160), respectively. These findings suggest that preoperative CT scans evaluated by machine learning may provide a novel set of information to help clinicians choose a tailored therapeutic pathway in patients candidated to pancreatoduodenectomy.


Asunto(s)
Fístula Pancreática , Pancreaticoduodenectomía , Humanos , Aprendizaje Automático , Fístula Pancreática/diagnóstico por imagen , Fístula Pancreática/etiología , Pancreaticoduodenectomía/efectos adversos , Complicaciones Posoperatorias/diagnóstico por imagen , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Tomografía Computarizada por Rayos X
3.
Diagnostics (Basel) ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34441252

RESUMEN

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.

4.
Cells ; 10(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918173

RESUMEN

Tissue Biomarkers are information written in the tissue and used in Pathology to recognize specific subsets of patients with diagnostic, prognostic or predictive purposes, thus representing the key elements of Personalized Medicine. The advent of Artificial Intelligence (AI) promises to further reinforce the role of Pathology in the scenario of Personalized Medicine: AI-based devices are expected to standardize the evaluation of tissue biomarkers and also to discover novel information, which would otherwise be ignored by human review, and use them to make specific predictions. In this review we will present how AI has been used to support Tissue Biomarkers evaluation in the specific field of Pathology, give an insight to the intriguing field of AI-based biomarkers and discuss possible advantages, risk and perspectives for Pathology.


Asunto(s)
Inteligencia Artificial , Biomarcadores/metabolismo , Patología , Animales , Humanos , Especificidad de Órganos , Riesgo , Programas Informáticos
5.
Cancers (Basel) ; 13(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282750

RESUMEN

Quantitative analysis of Tumor Microenvironment (TME) provides prognostic and predictive information in several human cancers but, with few exceptions, it is not performed in daily clinical practice since it is extremely time-consuming. We recently showed that the morphology of Tumor Associated Macrophages (TAMs) correlates with outcome in patients with Colo-Rectal Liver Metastases (CLM). However, as for other TME components, recognizing and characterizing hundreds of TAMs in a single histopathological slide is unfeasible. To fasten this process, we explored a deep-learning based solution. We tested three Convolutional Neural Networks (CNNs), namely UNet, SegNet and DeepLab-v3, with three different segmentation strategies, semantic segmentation, pixel penalties and instance segmentation. The different experiments are compared according to the Intersection over Union (IoU), a metric describing the similarity between what CNN predicts as TAM and the ground truth, and the Symmetric Best Dice (SBD), which indicates the ability of CNN to separate different TAMs. UNet and SegNet showed intrinsic limitations in discriminating single TAMs (highest SBD 61.34±2.21), whereas DeepLab-v3 accurately recognized TAMs from the background (IoU 89.13±3.85) and separated different TAMs (SBD 79.00±3.72). This deep-learning pipeline to recognize TAMs in digital slides will allow the characterization of TAM-related metrics in the daily clinical practice, allowing the implementation of prognostic tools.

6.
Artículo en Inglés | MEDLINE | ID: mdl-33799509

RESUMEN

Since December 2019, the world has been devastated by the Coronavirus Disease 2019 (COVID-19) pandemic. Emergency Departments have been experiencing situations of urgency where clinical experts, without long experience and mature means in the fight against COVID-19, have to rapidly decide the most proper patient treatment. In this context, we introduce an artificially intelligent tool for effective and efficient Computed Tomography (CT)-based risk assessment to improve treatment and patient care. In this paper, we introduce a data-driven approach built on top of volume-of-interest aware deep neural networks for automatic COVID-19 patient risk assessment (discharged, hospitalized, intensive care unit) based on lung infection quantization through segmentation and, subsequently, CT classification. We tackle the high and varying dimensionality of the CT input by detecting and analyzing only a sub-volume of the CT, the Volume-of-Interest (VoI). Differently from recent strategies that consider infected CT slices without requiring any spatial coherency between them, or use the whole lung volume by applying abrupt and lossy volume down-sampling, we assess only the "most infected volume" composed of slices at its original spatial resolution. To achieve the above, we create, present and publish a new labeled and annotated CT dataset with 626 CT samples from COVID-19 patients. The comparison against such strategies proves the effectiveness of our VoI-based approach. We achieve remarkable performance on patient risk assessment evaluated on balanced data by reaching 88.88%, 89.77%, 94.73% and 88.88% accuracy, sensitivity, specificity and F1-score, respectively.


Asunto(s)
COVID-19 , Humanos , Redes Neurales de la Computación , Medición de Riesgo , SARS-CoV-2 , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA