Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 12(3): e0174025, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301581

RESUMEN

Transgenic domestic animals represent an alternative to bioreactors for large-scale production of biopharmaceuticals and could also provide more accurate biomedical models than rodents. However, their generation remains inefficient. Recently, DNA transposons allowed improved transgenesis efficiencies in mice and pigs. In this work, Tn5 and Sleeping Beauty (SB) transposon systems were evaluated for transgenesis by simple cytoplasmic injection in livestock zygotes. In the case of Tn5, the transposome complex of transposon nucleic acid and Tn5 protein was injected. In the case of SB, the supercoiled plasmids encoding a transposon and the SB transposase were co-injected. In vitro produced bovine zygotes were used to establish the cytoplasmic injection conditions. The in vitro cultured blastocysts were evaluated for reporter gene expression and genotyped. Subsequently, both transposon systems were injected in seasonally available ovine zygotes, employing transposons carrying the recombinant human factor IX driven by the beta-lactoglobulin promoter. The Tn5 approach did not result in transgenic lambs. In contrast, the Sleeping Beauty injection resulted in 2 lambs (29%) carrying the transgene. Both animals exhibited cellular mosaicism of the transgene. The extraembryonic tissues (placenta or umbilical cord) of three additional animals were also transgenic. These results show that transpositional transgenesis by cytoplasmic injection of SB transposon components can be applied for the production of transgenic lambs of pharmaceutical interest.


Asunto(s)
Bovinos/embriología , Porcinos/embriología , Transposasas/genética , Cigoto/metabolismo , Animales , Animales Modificados Genéticamente , Citoplasma , Reacción en Cadena de la Polimerasa
2.
Theriogenology ; 86(8): 1886-1896.e1, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27566851

RESUMEN

The recently developed engineered nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) 9, provide new opportunities for gene editing in a straightforward manner. However, few reports are available regarding CRISPR application and efficiency in cattle. Here, the CRISPR/Cas9 system was used with the aim of inducing knockout and knock-in alleles of the bovine PRNP gene, responsible for mad cow disease, both in bovine fetal fibroblasts and in IVF embryos. Five single-guide RNAs were designed to target 875 bp of PRNP exon 3, and all five were codelivered with Cas9. The feasibility of inducing homologous recombination (HR) was evaluated with a reporter vector carrying EGFP flanked by 1 kbp PRNP regions (pHRegfp). For somatic cells, plasmids coding for Cas9 and for each of the five single-guide RNAs (pCMVCas9 and pSPgRNAs) were transfected under two different conditions (1X and 2X). For IVF zygotes, cytoplasmic injection was conducted with either plasmids or mRNA. For plasmid injection groups, 1 pg pCMVCas9 + 0.1 pg of each pSPgRNA (DNA2X) was used per zygote. In the case of RNA, two amounts (RNA1X and RNA2X) were compared. To assess the occurrence of HR, a group additionally cotransfected or coinjected with pHRegfp plasmid was included. Somatic cell lysates were analyzed by polymerase chain reaction and surveyor assay. In the case of embryos, the in vitro development and the genotype of blastocysts were evaluated by polymerase chain reaction and sequencing. In somatic cells, 2X transfection resulted in indels and large deletions of the targeted PRNP region. Regarding embryo injection, higher blastocyst rates were obtained for RNA injected groups (46/103 [44.6%] and 55/116 [47.4%] for RNA1X and RNA2X) than for the DNA2X group (26/140 [18.6%], P < 0.05). In 46% (26/56) of the total sequenced blastocysts, specific gene editing was detected. The total number of genetic modifications (29) was higher than the total number of gene-edited embryos, as three blastocysts from the group RNA2X reported more than one type of modification. The modifications included indels (10/56; 17.9%) and large deletions (19/56; 33.9%). Moreover, it was possible to detect HR in 1/8 (12.5%) embryos treated with RNA2X. These results report that the CRISPR/Cas9 system can be applied for site-specific edition of the bovine genome, which could have a great impact on the development of large animals resistant to important zoonotic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Bovinos/embriología , Fertilización In Vitro/veterinaria , Ingeniería Genética/veterinaria , Proteínas Priónicas/metabolismo , Animales , Bovinos/genética , Feto/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Priónicas/genética
3.
Theriogenology ; 80(4): 357-64, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23735715

RESUMEN

Embryo disaggregation allows the production of two to four identical offspring from a single cow embryo. In addition, embryo complementation has become the technique of choice to demonstrate the totipotency of embryonic stem cells and induced pluripotent stem cells. Therefore, the aim of this study was to generate a new and simple method by aggregation in the well-of-the-well system to direct each single enhanced green fluorescent protein (egfp) eight-cell blastomere derived from bovine in vitro fertilization embryos to the inner cell mass (ICM) of chimeras produced with fused and asynchronic embryos. To this end, the best conditions to generate in vitro fertilization-fused embryos were determined. Then, the fused (F) and nonfused (NF) embryos were aggregated in two distinct conditions: synchronically (S), with both transgenic and F embryos produced on the same day, and asynchronically (AS), with transgenic embryos produced one day before F embryos. The highest fusion and blastocysts rates were obtained with two pulses of 40 V. The 2ASF and 2ASNF groups showed the best number of blastocysts expressing the EGFP protein (48% and 41%, respectively). Furthermore, the 2ASF group induced the highest localization rates of the egfp-expressing blastomere in the ICM (6/13, 46% of ICM transgene-expressing blastocysts). This technique will have great application for multiplication of embryos of high genetic value or transgenic embryos and also with the generation of truly bovine embryonic stem cells and induced pluripotent stem cells.


Asunto(s)
Blastómeros/citología , Blastómeros/metabolismo , Bovinos , Quimera/embriología , Fase de Segmentación del Huevo , Clonación de Organismos/veterinaria , Proteínas Fluorescentes Verdes/genética , Animales , Animales Modificados Genéticamente , Bovinos/embriología , Bovinos/genética , Bovinos/metabolismo , Fusión Celular/veterinaria , Células Cultivadas , Fase de Segmentación del Huevo/citología , Fase de Segmentación del Huevo/metabolismo , Fase de Segmentación del Huevo/fisiología , Clonación de Organismos/métodos , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Fertilización In Vitro/métodos , Proteínas Fluorescentes Verdes/metabolismo , Masculino
4.
Theriogenology ; 80(2): 104-13.e1-29, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23623164

RESUMEN

Although transgenic methods in mammals are inefficient, an easy and highly efficient transgenesis system using I-SceI meganuclease (intron-encoded endonuclease from S. cerevisiae) was recently described in Xenopus. The method consisted of injection into fertilized eggs of an I-SceI reaction mixture with a plasmid DNA carrying the transgene, flanked by the meganuclease recognition sites (pIS). In the present study, the effects of I-SceI on gene transfer were tested apparently for the first time in mammals, in particular, in cattle. Various conditions were evaluated, including three concentrations of the plasmid pIS Pax6egfp, carrying I-SceI recognition sites flanking egfp under Pax6 promoter and two injection times (before IVM and after IVF) of pIS CAGegfp, carrying I-SceI sites fanking egfp under CAG promoter. In addition, the quantity of transgene was measured using quantitative polymerase chain reaction, and presence of transgene signals was evaluated using fluorescence in situ hybridization analysis. Transgene expression rates were higher (P < 0.05) for groups treated after IVF (79.1%, 91/115 and 63.0%, 75/119) than before IVM (32.6%, 31/95 and 34.7%, 33/95), with and without I-SceI, respectively. Interestingly, injection with pIS plus I-SceI after IVF increased frequency (P < 0.05) of nonmosaic transgene-expressing embryos (58.3%, 42/72 vs. 29.7%, 25/84) for pIS plus I-SceI and pIS alone. Based on fluorescence in situ hybridization analysis, injection with I-SceI increased (P < 0.05) the proportion of embryos with transgene signals in all blastomeres compared with pIS alone (44.0%, 11/25 vs. 6.9%, 2/29) for pIS plus I-SceI and pIS alone. In addition, transgene copy number was numerically higher for the group treated with pIS plus I-SceI compared with pIS alone. In conclusion, I-SceI gene transfer increased transgene signals in bovine embryos.


Asunto(s)
Bovinos , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Fertilización In Vitro/métodos , Técnicas de Transferencia de Gen/veterinaria , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Animales Modificados Genéticamente , Bovinos/embriología , Bovinos/genética , Células Cultivadas , Citoplasma/genética , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Femenino , Fertilización In Vitro/veterinaria , Proteínas Fluorescentes Verdes/genética , Microinyecciones/métodos , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA