Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Virol ; 95(5): e28806, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37219050

RESUMEN

Intranasal (i.n.) vaccines can induce mucosal and systemic immunity against respiratory pathogens. Previously, we demonstrated that the recombinant vesicular stomatitis virus (rVSV)-based COVID-19 vaccine rVSV-SARS-CoV-2, with poor immunogenicity via the intramuscular route (i.m.), is more suitable for i.n. administration in mice and nonhuman primates. Here, we found that the rVSV-SARS-CoV-2 Beta variant was more immunogenic than the wild-type strain and other variants of concern (VOCs) in golden Syrian hamsters. Furthermore, the immune responses elicited by rVSV-based vaccine candidates via the i.n. route were significantly higher than those of two licensed vaccines: the inactivated vaccine KCONVAC delivered via the i.m. route and the adenovirus-based Vaxzevria delivered i.n. or i.m. We next assessed the booster efficacy of rVSV following two i.m. doses of KCONVAC. Twenty-eight days after receiving two i.m. doses of KCONVAC, hamsters were boosted with a third dose of KCONVAC (i.m.), Vaxzevria (i.m. or i.n.), or rVSVs (i.n.). Consistent with other heterologous booster studies, Vaxzevria and rVSV elicited significantly higher humoral immunity than the homogenous KCONVAC. In summary, our results confirmed that two i.n. doses of rVSV-Beta elicited significantly higher humoral immune responses than commercial inactivated and adeno-based COVID vaccines in hamsters. As a heterologous booster dose, rVSV-Beta induced potent, persistent, and broad-spectrum humoral and mucosal neutralizing responses against all VOCs, highlighting its potential to be developed into a nasal-spray vaccine.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , Roedores , Rociadores Nasales , ChAdOx1 nCoV-19 , COVID-19/prevención & control , SARS-CoV-2/genética , Vesiculovirus , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Future Virol ; 18(7): 403-410, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38051998

RESUMEN

Aim: This study used CpG 684 as adjuvant of inactivated COVID-19 vaccine to detect a humoral and cellular immune response in mice. Materials & methods: We used 10 and 20 µg CpG 684 as adjuvants of an inactivated COVID-19 vaccine to immunize mice. IgG, IgG1, IgG2a, IgG2b and IgM binding antibodies were detected in serum by ELISA. The IFN-γ cytokine was detected by ELISPOT. Results: CpG 684 improved spike-specific IgG and IgM subtype binding antibodies and increased the neutralizing antibody titer against prototype, Delta and Beta strains. CpG 684 also improved cellular immune response. Conclusion: CpG 684 is an effective adjuvant for inactivated COVID-19 vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA