Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomacromolecules ; 24(6): 2691-2705, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167573

RESUMEN

Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.


Asunto(s)
Gelatina , Hidrogeles , Gelatina/química , Hidrogeles/farmacología , Hidrogeles/química , Sustancias Húmicas , Antioxidantes/farmacología , Reactivos de Enlaces Cruzados/química , Antibacterianos/farmacología
2.
Environ Sci Technol ; 56(16): 11771-11779, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35896036

RESUMEN

Nitrification inhibitors (NI) represent a valid chemical strategy to retard nitrogen oxidation in soil and limit nitrate leaching or nitrogen oxide emission. We hypothesized that humic substances can complex NI, thus affecting their activity, mobility, and persistence in soil. Therefore, we focused on 3,4-dimethylpyrazole phosphate (DMPP) by placing it in contact with increasing concentrations of model fulvic (FA) and humic (HA) acids. The complex formation was assessed through advanced and composite NMR techniques (chemical shift drift, line-broadening effect, relaxation times, saturation transfer difference (STD), and diffusion ordered spectroscopy (DOSY)). Our results showed that both humic substances interacted with DMPP, with HA exhibiting a significantly greater affinity than FA. STD emphasized the pivotal role of the aromatic signal, for HA-DMPP association, and both alkyl methyl groups, for FA-DMPP association. The fractions of complexed DMPP were determined on the basis of self-diffusion coefficients, which were then exploited to calculate both the humo-complex affinity constants and the free Gibbs energy (Kd and ΔG for HA were 0.5169 M and -1636 kJ mol-1, respectively). We concluded that DMPP-based NI efficiency may be altered by soil organic matter, characterized by a pronounced hydrophobic nature. This is relevant to improve nitrogen management and lower its environmental impact.


Asunto(s)
Sustancias Húmicas , Suelo , Yoduro de Dimetilfenilpiperazina , Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética/métodos , Nitrógeno/análisis , Fosfatos , Pirazoles/química
3.
J Sci Food Agric ; 102(7): 2885-2892, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34755340

RESUMEN

BACKGROUND: Developing eco-friendly antioxidant and antimicrobial substances originating from biomass residues has recently attracted considerable interest. In this study, two lignosulfonates and various oxidized water-soluble lignins were investigated for their antioxidant properties, as assessed by ABTS, DPPH and Folin-Ciocalteu methods, and their antimicrobial activity against some bacterial strains responsible for human pathologies. RESULTS: The lignosulfonates showed the largest antiradical/antimicrobial capacity, whereas the other substrates were less effective. The observed antioxidant/antibacterial properties were positively correlated with lignin aromatic/phenolic content. The positive correlation between antiradical and antimicrobial activities suggests that lignin scavenging capacity was also involved in its antibacterial activity. A greater antimicrobial performance was generally observed against Gram-positive bacterial strains, and it was attributed to the intrinsic larger susceptibility of Gram-positive bacteria to lignin phenols. A significant though lesser inhibitory activity was also found against Escherichia coli. CONCLUSION: Our results confirmed the dependence of lignin antioxidant/antibacterial power on its extraction method and chemical structure, as well as on the type of bacterial strains. Identifying the relationship between lignin molecular composition and its antioxidant/antibacterial features represents an advance on the potential future use of renewable and eco-compatible lignin materials in nutraceutical, pharmaceutical and cosmetic sectors. © 2021 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Lignina , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias , Bacterias Grampositivas , Humanos , Lignina/farmacología , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
4.
J Environ Manage ; 281: 111878, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33388711

RESUMEN

Sugarcane bagasse, vinasse and a mixture of sugarcane bagasse and vinasse were hydrothermally carbonized (HTC), with and without the addition of phosphoric acid, in order to propose new applications of sucroenergetic industry by-products on soil. Detailed information on the composition and properties of hydrochars has been obtained through elemental composition, thermogravimetric analysis, nuclear magnetic resonance and, thermochemolysis GC-MS. The soluble acidic fraction from the hydrochar samples were applied to maize seeds to evaluate the agronomic potential as biostimulants and relate the molecular features with maize seed germination. The HTC treatment converted polysaccharide-based biomasses into hydrochars with hydrophobic characteristics (C-Aryl and C-Akyl). Furthermore, the addition of phosphoric acid further increased the overall hydrophobicity and shifted the thermal degradation of the hydrochars to higher temperatures. Biomass influenced the hydrochars that formed, in which the molecular features of sugarcane bagasse determined the formation of more polar hydrochar, due to the preservation of lignin and phenolic components. Meanwhile, the HTC of vinasse resulted in a more hydrophobic product with an enrichment of condensed and recalcitrant organic fractions. The germination assay showed that polar structures of bagasse may play a role in improving the maize seeds germination rate (increase of ~11%), while the hydrophobic domains showed negative effects. The responses obtained in germination seems to be related to the molecular characteristics that organic extracts can present in solution.


Asunto(s)
Germinación , Saccharum , Carbono , Extractos Vegetales , Semillas , Temperatura , Zea mays
5.
Int J Biol Macromol ; 262(Pt 2): 129966, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320639

RESUMEN

A hydrotropic solution of maleic acid (MA) was exploited to fractionate giant reed (AD) and eucalypt (EUC). The pre-treatment was successful for AD, while it was unsatisfactory for EUC, likely due to unoptimized reaction conditions. Interestingly, lignin nanoparticles (LNP) were produced via spontaneous aggregation following spent liquor dilution. LNP were studied by a plethora of analytical techniques, such as thermogravimetry, electron microscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). Notwithstanding LNP from both AD and EUC showed similar thermal behaviour and morphology, a greater content of aliphatic hydroxyl, carboxyl, guaiacyl and p-hydroxyphenyl moieties was reported for AD-LNP, whereas EUC-LNP had a larger amount of syringyl groups and a higher S/G ratio. Also, the 1H-DOSY NMR indicated the lower size of AD-LNP. Moreover, the LNP were found to negatively impact on the development of several human or plant pathogens, and their bioactivity was related to the occurrence of guaiacyl and p-hydroxyphenyl moieties and a lower the LNP size. We therefore found that MA delignification allows both to achieve high delignification efficiency and to obtain LNP with promising antibacterial effect. Such LNP may help counteracting the antibiotics resistance and sustain the quest for finding sustainable agrochemicals.


Asunto(s)
Lignina , Nanopartículas , Humanos , Lignina/química , Espectroscopía de Resonancia Magnética
6.
Heliyon ; 10(10): e31059, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803888

RESUMEN

This study monitored the process and investigated the quality of compost obtained from different biomasses. Five blends of agri-food waste were composted by a laboratory pilot plant named COMPOSTER, that is designed to optimize biodegradation, and produce compost efficiently. The COMPOSTER consists of two 35-liter nearly adiabatic, aerated bioreactors that simulate an industrial process involving the typical sequence of mesophilic-thermophilic-mesophilic phases. It continuously monitors and records temperature, internal pressure, and biomass weight, while controlling and quantifying oxygen consumption and carbon dioxide emissions resulting from aerobic biodegradation. All composts were characterized for their main chemical, physical, and molecular features, as well as their suppressiveness against Fusarium oxysporum f.sp. lycopersici (FOL), tested on tomato seedlings. Optimized biodegradation yielded 50-60 % mature compost with a cumulative oxygen consumption ranging from 282 to 456 gO2 per kg of dry matter, with peaks of 2.55 gO2 per kg of volatile solids per hour, and carbon dioxide emissions of 22-36 % of the initial carbon content, with peaks of 5.89 g CO2 per kg of volatile solids per hour. Blends containing more ligno-cellulosic ingredients showed higher yields and lower CO2 emissions. Most of the nitrogen present initially was retained in the final compost; indeed, all mixtures exhibited an apparent nitrogen concentration increase due to carbon loss. Composting determined deep modifications in the molecular structure of the organic matter. 13C CPMAS-NMR and off-line thermochemolysis GC-MS analyses highlighted decomposition degree of polysaccharides and peptidic moieties, selective preservation of aliphatic and aromatic recalcitrant compounds, and optimal ongoing humification. All composts were non-phytotoxic, except for that including pepper crop residues, and all resulted rich in macro- and micro-elements for plant nutrition and proved to be active in controlling FOL disease. Compost comprising 81.2 % tomato crop waste exhibited the best growth performance and pathogen control on tomato. Mature, non-phytotoxic, nutrient-rich, and suppressive composts represent promising by-products that can be successfully recycled in agriculture, including high-value applications, leading to lower use of fertilizers and pesticides.

7.
Microbiome ; 11(1): 205, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37705113

RESUMEN

BACKGROUND: In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS: In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS: In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Animales , Larva , Microbioma Gastrointestinal/genética , Plásticos , ARN Ribosómico 16S/genética
8.
Plants (Basel) ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687394

RESUMEN

Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.

9.
Chemosphere ; 287(Pt 1): 131985, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34454229

RESUMEN

Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an inorganic nanostructured component, leading to more stable hybrid nanomaterials with tunable functionalities. Indeed, chemical composition of HA can determine their interactions with the inorganic constituent in the hybrid nanoparticles and consequently affect their overall physico-chemical properties, including their stability and functional properties in aqueous environment. As a fundamental contribution to HA materials-based technology, this study aims at unveiling this aspect. To this purpose, SiO2 nanoparticles have been chosen as a model platform and three different HAs extracted from composted biomasses, manure (HA_Man), artichoke residues (HA_Art) and coffee grounds (HA_Cof), were employed to synthetize hybrid HA-SiO2 nanoparticles through in-situ sol-gel synthesis. Prepared samples were submitted to aging in water to assess their stability. Furthermore, antioxidant properties and physico-chemical properties of both as prepared and aged samples in aqueous environment were assessed through Scanning Electron Microscopy (SEM), N2 physisorption, Simultaneous Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) Analysis, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) spectroscopies. The experimental results highlighted that hybrid HA-SiO2 nanostructures acted as dynamic systems which exhibit structural supramolecular reorganization during aging in aqueous environment with marked effects on physico-chemical and functional properties, including improved antioxidant activity. Obtained results enlighten a unique aspect of interactions between HA and inorganic nanoparticles that could be useful to predict their behavior in aqueous environment. Furthermore, the proposed approach traces a technological route for the exploitation of organic biowaste in the design of hybrid nanomaterials, providing a significant contribution to the development of waste to wealth strategies based on humic substances.


Asunto(s)
Sustancias Húmicas , Nanoestructuras , Anciano , Humanos , Sustancias Húmicas/análisis , Masculino , Dióxido de Silicio , Espectroscopía Infrarroja por Transformada de Fourier , Agua
10.
Chemosphere ; 279: 130518, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33873069

RESUMEN

A Humeomic fractionation revealed the humus molecular composition of two uncropped calcareous soils of Northern France and differentiated the soils Humeome by extracting humic components first unbound to the organo-mineral matrix and then liberated from their progressively stronger intermolecular and intramolecular ester and ether linkages. We separated organo- (ORG1-3) and water-soluble (AQU2 and AQU4) fractions, a final extractable fraction (RESOM) and soil residues. Organo-soluble fractions were studied by GC coupled with high-resolution mass spectrometry (GC/qTOF-MS), all fractions underwent mono- and two-dimensional liquid-state NMR (except for the iron-rich AQU4 fraction), while solid-state 13C-CPMAS-NMR spectroscopy analyzed soil residues. The Calcaric Leptosol (A) showed a larger mass extraction than the Calcaric Cambisol (B), and a greater cumulative C and N content in its Humeome. Both soils showed the greatest weight yield for AQU4 fraction, followed by ORG2, RESOM, ORG1, AQU2, and ORG3. ORG2 was the most differentiating fraction between the two soils for both compound concentration and diversity, showing a larger C content for soil A than for soil B and a different distribution in aromatic compounds, fatty acids, and dicarboxylic acids. No significant differences between soils were found for ORG 3, suggesting similar processes of OM stabilization for its recalcitrant components, mostly hydrophobic esters of alkanoic, hydroxy, and aromatic acids with linear alkanols. We confirmed that Humeomic fractionation coupled to advanced analytical instrumentations enabled a detailed molecular characterization of the soil Humeome and differentiated between the two calcareous grassland soils and the other soils previously subjected to Humeomics.


Asunto(s)
Sustancias Húmicas , Suelo , Francia , Pradera , Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética
11.
Microorganisms ; 9(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494462

RESUMEN

Waste biomass coming from a local coffee company, which supplied burnt ground coffee after an incorrect roasting process, was employed as a starting material in the composting plant of the Experimental Station of the University of Naples Federico II at Castel Volturno (CE). The direct molecular characterization of compost using 13C-NMR spectra, which was acquired through cross-polarization magic-angle spinning, showed a hydrophobicity index of 2.7% and an alkyl/hydroxyalkyl index of 0.7%. Compost samples that were collected during the early "active thermophilic phase" (when the composting temperature was 63 °C) were analyzed for the prokaryotic community composition and activities. Two complementary approaches, i.e., genomic and predictive metabolic analysis of the 16S rRNA V3-V4 amplicon and culture-dependent analysis, were combined to identify the main microbial factors that characterized the composting process. The whole microbial community was dominated by Firmicutes. The predictive analysis of the metabolic functionality of the community highlighted the potential degradation of peptidoglycan and the ability of metal chelation, with both functions being extremely useful for the revitalization and fertilization of agricultural soils. Finally, three biotechnologically relevant Firmicutes members, i.e., Geobacillus thermodenitrificans subsp. calidus, Aeribacillus pallidus, and Ureibacillus terrenus (strains CAF1, CAF2, and CAF5, respectively) were isolated from the "active thermophilic phase" of the coffee composting. All strains were thermophiles growing at the optimal temperature of 60 °C. Our findings contribute to the current knowledge on thermophilic composting microbiology and valorize burnt ground coffee as waste material with biotechnological potentialities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA