Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(4): 1554-1560, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36718088

RESUMEN

Recurrent episodes of weakness in periodic paralysis are caused by intermittent loss of muscle fibre excitability, as a consequence of sustained depolarization of the resting potential. Repolarization is favoured by increasing the fibre permeability to potassium. Based on this principle, we tested the efficacy of retigabine, a potassium channel opener, to suppress the loss of force induced by a low-K+ challenge in hypokalaemic periodic paralysis (HypoPP). Retigabine can prevent the episodic loss of force in HypoPP. Knock-in mutant mouse models of HypoPP (Cacna1s p.R528H and Scn4a p.R669H) were used to determine whether pre-treatment with retigabine prevented the loss of force, or post-treatment hastened recovery of force for a low-K+ challenge in an ex vivo contraction assay. Retigabine completely prevents the loss of force induced by a 2 mM K+ challenge (protection) in our mouse models of HypoPP, with 50% inhibitory concentrations of 0.8 ± 0.13 µM and 2.2 ± 0.42 µM for NaV1.4-R669H and CaV1.1-R528H, respectively. In comparison, the effective concentration for the KATP channel opener pinacidil was 10-fold higher. Application of retigabine also reversed the loss of force (rescue) for HypoPP muscle maintained in 2 mM K+. Our findings show that retigabine, a selective agonist of the KV7 family of potassium channels, is effective for the prevention of low-K+ induced attacks of weakness and to enhance recovery from an ongoing loss of force in mouse models of type 1 (Cacna1s) and type 2 (Scn4a) HypoPP. Substantial protection from the loss of force occurred in the low micromolar range, well within the therapeutic window for retigabine.


Asunto(s)
Parálisis Periódica Hipopotasémica , Ratones , Animales , Músculo Esquelético , Carbamatos/farmacología , Carbamatos/uso terapéutico , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico
2.
Am J Physiol Cell Physiol ; 323(2): C478-C485, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759432

RESUMEN

Hypokalemic periodic paralysis (HypoPP) is a channelopathy of skeletal muscle caused by missense mutations in the voltage sensor domains (usually at an arginine of the S4 segment) of the CaV1.1 calcium channel or of the NaV1.4 sodium channel. The primary clinical manifestation is recurrent attacks of weakness, resulting from impaired excitability of anomalously depolarized fibers containing leaky mutant channels. Although the ictal loss of fiber excitability is sufficient to explain the acute episodes of weakness, a deleterious change in voltage sensor function for CaV1.1 mutant channels may also compromise excitation-contraction coupling (EC-coupling). We used the low-affinity Ca2+ indicator Oregon Green 488 BAPTA-5N (OGB-5N) to assess voltage-dependent Ca2+-release as a measure of EC-coupling for our knock-in mutant mouse models of HypoPP. The peak ΔF/F0 in fibers isolated from CaV1.1-R528H mice was about two-thirds of the amplitude observed in WT mice; whereas in HypoPP fibers from NaV1.4-R669H mice the ΔF/F0 was indistinguishable from WT. No difference in the voltage dependence of ΔF/F0 from WT was observed for fibers from either HypoPP mouse model. Because late-onset permanent muscle weakness is more severe for CaV1.1-associated HypoPP than for NaV1.4, we propose that the reduced Ca2+-release for CaV1.1-R528H mutant channels may increase the susceptibility to fixed myopathic weakness. In contrast, the episodes of transient weakness are similar for CaV1.1- and NaV1.4-associated HypoPP, consistent with the notion that acute attacks of weakness are primarily caused by leaky channels and are not a consequence of reduced Ca2+-release.


Asunto(s)
Canales de Calcio Tipo L , Parálisis Periódica Hipopotasémica , Canal de Sodio Activado por Voltaje NAV1.4 , Animales , Canales de Calcio Tipo L/genética , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Parálisis Periódica Hipopotasémica/genética , Ratones , Músculo Esquelético/metabolismo , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.4/genética
3.
Proc Natl Acad Sci U S A ; 115(15): E3559-E3568, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581270

RESUMEN

A de novo mutation in the KCND2 gene, which encodes the Kv4.2 K+ channel, was identified in twin boys with intractable, infant-onset epilepsy and autism. Kv4.2 channels undergo closed-state inactivation (CSI), a mechanism by which channels inactivate without opening during subthreshold depolarizations. CSI dynamically modulates neuronal excitability and action potential back propagation in response to excitatory synaptic input, controlling Ca2+ influx into dendrites and regulating spike timing-dependent plasticity. Here, we show that the V404M mutation specifically affects the mechanism of CSI, enhancing the inactivation of channels that have not opened while dramatically impairing the inactivation of channels that have opened. The mutation gives rise to these opposing effects by increasing the stability of the inactivated state and in parallel, profoundly slowing the closure of open channels, which according to our data, is required for CSI. The larger volume of methionine compared with valine is a major factor underlying altered inactivation gating. Our results suggest that V404M increases the strength of the physical interaction between the pore gate and the voltage sensor regardless of whether the gate is open or closed. Furthermore, in contrast to previous proposals, our data strongly suggest that physical coupling between the voltage sensor and the pore gate is maintained in the inactivated state. The state-dependent effects of V404M on CSI are expected to disturb the regulation of neuronal excitability and the induction of spike timing-dependent plasticity. Our results strongly support a role for altered CSI gating in the etiology of epilepsy and autism in the affected twins.


Asunto(s)
Trastorno Autístico/genética , Epilepsia/genética , Canales de Potasio Shal/genética , Animales , Trastorno Autístico/metabolismo , Epilepsia/metabolismo , Femenino , Humanos , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Potenciales de la Membrana/fisiología , Mutación , Oocitos/fisiología , Técnicas de Placa-Clamp/métodos , Polimorfismo Genético , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Canales de Potasio Shal/metabolismo , Transfección , Xenopus laevis
4.
Muscle Nerve ; 62(4): 430-444, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32270509

RESUMEN

The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. In the absence of genetic confirmation, the diagnosis is supported by detailed electrophysiological testing, exclusion of other related disorders, and analysis of a variant of uncertain significance if present. Symptomatic treatment with a sodium channel blocker, such as mexiletine, is usually the first step in management, as well as educating patients about potential anesthetic complications.


Asunto(s)
Fatiga/fisiopatología , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Mialgia/fisiopatología , Trastornos Miotónicos/fisiopatología , Acetazolamida/uso terapéutico , Edad de Inicio , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Canales de Cloruro/genética , Electrodiagnóstico , Electromiografía , Pruebas Genéticas , Humanos , Lamotrigina/uso terapéutico , Mexiletine/uso terapéutico , Miotonía Congénita/tratamiento farmacológico , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Guías de Práctica Clínica como Asunto , Ranolazina/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
5.
Muscle Nerve ; 57(4): 522-530, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29125635

RESUMEN

Periodic paralyses (PPs) are rare neuromuscular disorders caused by mutations in skeletal muscle sodium, calcium, and potassium channel genes. PPs include hypokalemic paralysis, hyperkalemic paralysis, and Andersen-Tawil syndrome. Common features of PP include autosomal dominant inheritance, onset typically in the first or second decades, episodic attacks of flaccid weakness, which are often triggered by diet or rest after exercise. Diagnosis is based on the characteristic clinic presentation then confirmed by genetic testing. In the absence of an identified genetic mutation, documented low or high potassium levels during attacks or a decrement on long exercise testing support diagnosis. The treatment approach should include both management of acute attacks and prevention of attacks. Treatments include behavioral interventions directed at avoidance of triggers, modification of potassium levels, diuretics, and carbonic anhydrase inhibitors. Muscle Nerve 57: 522-530, 2018.


Asunto(s)
Síndrome de Andersen/diagnóstico , Parálisis Periódicas Familiares/diagnóstico , Acetazolamida/uso terapéutico , Síndrome de Andersen/terapia , Antiarrítmicos/uso terapéutico , Terapia Conductista , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Diuréticos/uso terapéutico , Diuréticos Conservadores de Potasio/uso terapéutico , Humanos , Hidroclorotiazida/uso terapéutico , Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/terapia , Parálisis Periódicas Familiares/terapia , Parálisis Periódica Hiperpotasémica/diagnóstico , Parálisis Periódica Hiperpotasémica/terapia , Potasio/uso terapéutico
6.
Handb Exp Pharmacol ; 246: 309-330, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28939973

RESUMEN

The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.


Asunto(s)
Canalopatías/etiología , Enfermedades Musculares/etiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Animales , Humanos , Miotonía/etiología , Miotonía Congénita/etiología , Parálisis Periódica Hiperpotasémica/etiología
7.
Brain ; 139(Pt 6): 1688-99, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048647

RESUMEN

Over 60 mutations of SCN4A encoding the NaV1.4 sodium channel of skeletal muscle have been identified in patients with myotonia, periodic paralysis, myasthenia, or congenital myopathy. Most mutations are missense with gain-of-function defects that cause susceptibility to myotonia or periodic paralysis. Loss-of-function from enhanced inactivation or null alleles is rare and has been associated with myasthenia and congenital myopathy, while a mix of loss and gain of function changes has an uncertain relation to hypokalaemic periodic paralysis. To better define the functional consequences for a loss-of-function, we generated NaV1.4 null mice by deletion of exon 12. Heterozygous null mice have latent myasthenia and a right shift of the force-stimulus relation, without evidence of periodic paralysis. Sodium current density was half that of wild-type muscle and no compensation by retained expression of the foetal NaV1.5 isoform was detected. Mice null for NaV1.4 did not survive beyond the second postnatal day. This mouse model shows remarkable preservation of muscle function and viability for haploinsufficiency of NaV1.4, as has been reported in humans, with a propensity for pseudo-myasthenia caused by a marginal Na(+) current density to support sustained high-frequency action potentials in muscle.


Asunto(s)
Debilidad Muscular/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Heterocigoto , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Músculo Esquelético/fisiología , Linaje
8.
Proc Natl Acad Sci U S A ; 110(29): 11881-6, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818578

RESUMEN

Excitation-contraction (EC) coupling comprises events in muscle that convert electrical signals to Ca(2+) transients, which then trigger contraction of the sarcomere. Defects in these processes cause a spectrum of muscle diseases. We report that STAC3, a skeletal muscle-specific protein that localizes to T tubules, is essential for coupling membrane depolarization to Ca(2+) release from the sarcoplasmic reticulum (SR). Consequently, homozygous deletion of src homology 3 and cysteine rich domain 3 (Stac3) in mice results in complete paralysis and perinatal lethality with a range of musculoskeletal defects that reflect a blockade of EC coupling. Muscle contractility and Ca(2+) release from the SR of cultured myotubes from Stac3 mutant mice could be restored by application of 4-chloro-m-cresol, a ryanodine receptor agonist, indicating that the sarcomeres, SR Ca(2+) store, and ryanodine receptors are functional in Stac3 mutant skeletal muscle. These findings reveal a previously uncharacterized, but required, component of the EC coupling machinery of skeletal muscle and introduce a candidate for consideration in myopathic disorders.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Potenciales de Acción/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Northern Blotting , Western Blotting , Cartilla de ADN/genética , Electroporación , Genotipo , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , beta-Galactosidasa
11.
Brain ; 136(Pt 12): 3766-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24142145

RESUMEN

Transient attacks of weakness in hypokalaemic periodic paralysis are caused by reduced fibre excitability from paradoxical depolarization of the resting potential in low potassium. Mutations of calcium channel and sodium channel genes have been identified as the underlying molecular defects that cause instability of the resting potential. Despite these scientific advances, therapeutic options remain limited. In a mouse model of hypokalaemic periodic paralysis from a sodium channel mutation (NaV1.4-R669H), we recently showed that inhibition of chloride influx with bumetanide reduced the susceptibility to attacks of weakness, in vitro. The R528H mutation in the calcium channel gene (CACNA1S encoding CaV1.1) is the most common cause of hypokalaemic periodic paralysis. We developed a CaV1.1-R528H knock-in mouse model of hypokalaemic periodic paralysis and show herein that bumetanide protects against both muscle weakness from low K+ challenge in vitro and loss of muscle excitability in vivo from a glucose plus insulin infusion. This work demonstrates the critical role of the chloride gradient in modulating the susceptibility to ictal weakness and establishes bumetanide as a potential therapy for hypokalaemic periodic paralysis arising from either NaV1.4 or CaV1.1 mutations.


Asunto(s)
Bumetanida/uso terapéutico , Canales de Calcio Tipo L/genética , Parálisis Periódica Hipopotasémica/tratamiento farmacológico , Parálisis Periódica Hipopotasémica/genética , Mutación/genética , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/uso terapéutico , Acetazolamida/farmacología , Animales , Arginina/genética , Inhibidores de Anhidrasa Carbónica/farmacología , Modelos Animales de Enfermedad , Potenciales Evocados Motores/efectos de los fármacos , Potenciales Evocados Motores/genética , Furosemida/farmacología , Glucosa/metabolismo , Histidina/genética , Parálisis Periódica Hipopotasémica/patología , Parálisis Periódica Hipopotasémica/fisiopatología , Técnicas In Vitro , Contracción Isométrica/efectos de los fármacos , Contracción Isométrica/genética , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/fisiopatología
12.
Hum Mol Genet ; 20(20): 3925-32, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21775502

RESUMEN

Mutations in tripartite motif protein 32 (TRIM32) are responsible for several hereditary disorders that include limb girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathy (STM) and Bardet Biedl syndrome. Most LGMD2H mutations in TRIM32 are clustered in the NHL ß-propeller domain at the C-terminus and are predicted to interfere with homodimerization. To get insight into TRIM32's role in the pathogenesis of LGMD2H and to create an accurate model of disease, we have generated a knock-in mouse (T32KI) carrying the c.1465G > A (p.D489N) mutation in murine Trim32 corresponding to the human LGMD2H/STM pathogenic mutation c.1459G > A (p.D487N). Our data indicate that T32KI mice have both a myopathic and a neurogenic phenotype, very similar to the one described in the Trim32-null mice that we created previously. Analysis of Trim32 gene expression in T32KI mice revealed normal mRNA levels, but a severe reduction in mutant TRIM32 (D489N) at the protein level. Our results suggest that the D489N pathogenic mutation destabilizes the protein, leading to its degradation, and results in the same mild myopathic and neurogenic phenotype as that found in Trim32-null mice. Thus, one potential mechanism of LGMD2H might be destabilization of mutated TRIM32 protein leading to a null phenotype.


Asunto(s)
Distrofia Muscular de Cinturas/genética , Mutación Missense , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Animales , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Marcación de Gen , Ratones , Ratones Transgénicos , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Miosinas/metabolismo , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
J Biol Chem ; 286(31): 27425-35, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21665951

RESUMEN

Hypokalemic periodic paralysis (hypoKPP) is characterized by episodic flaccid paralysis of muscle and acute hypokalemia during attacks. Familial forms of hypoKPP are predominantly caused by mutations of either voltage-gated Ca(2+) or Na(+) channels. The pathogenic gene mutation in non-familial hypoKPP, consisting mainly of thyrotoxic periodic paralysis (TPP) and sporadic periodic paralysis (SPP), is largely unknown. Recently, mutations in KCNJ18, which encodes a skeletal muscle-specific inwardly rectifying K(+) channel Kir2.6, were reported in some TPP patients. Whether mutations of Kir2.6 occur in other patients with non-familial hypoKPP and how mutations of the channel predispose patients to paralysis are unknown. Here, we report one conserved heterozygous mutation in KCNJ18 in two TPP patients and two separate heterozygous mutations in two SPP patients. These mutations result in V168M, R43C, and A200P amino acid substitution of Kir2.6, respectively. Compared with the wild type channel, whole-cell currents of R43C and V168M mutants were reduced by ∼78 and 43%, respectively. No current was detected for the A200P mutant. Single channel conductance and open probability were reduced for R43C and V168M, respectively. Biotinylation assays showed reduced cell surface abundance for R43C and A200P. All three mutants exerted dominant negative inhibition on wild type Kir2.6 as well as wild type Kir2.1, another Kir channel expressed in the skeletal muscle. Thus, mutations of Kir2.6 are associated with SPP as well as TPP. We suggest that decreased outward K(+) current from hypofunction of Kir2.6 predisposes the sarcolemma to hypokalemia-induced paradoxical depolarization during attacks, which in turn leads to Na(+) channel inactivation and inexcitability of muscles.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Femenino , Humanos , Masculino , Datos de Secuencia Molecular
15.
J Clin Invest ; 118(4): 1437-49, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18317596

RESUMEN

Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K+ ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na+ channel NaV1.4. Mice heterozygous for this mutation exhibited prominent myotonia at rest and muscle fiber-type switching to a more oxidative phenotype compared with controls. Isolated mutant extensor digitorum longus muscles were abnormally sensitive to the Na+/K+ pump inhibitor ouabain and exhibited age-dependent changes, including delayed relaxation and altered generation of tetanic force. Moreover, rapid and sustained weakness of isolated mutant muscles was induced when the extracellular K+ concentration was increased from 4 mM to 10 mM, a level observed in the muscle interstitium of humans during exercise. Mutant muscle recovered from stimulation-induced fatigue more slowly than did control muscle, and the extent of recovery was decreased in the presence of high extracellular K+ levels. These findings demonstrate that expression of the Met1592ValNa+ channel in mouse muscle is sufficient to produce important features of HyperKPP, including myotonia, K+-sensitive paralysis, and susceptibility to delayed weakness during recovery from fatigue.


Asunto(s)
Músculo Esquelético/metabolismo , Miotonía/metabolismo , Miotonía/patología , Potasio/metabolismo , Canales de Sodio/metabolismo , Envejecimiento/fisiología , Animales , Progresión de la Enfermedad , Electrofisiología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Miotonía/genética , Oxidación-Reducción , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/metabolismo , Parálisis Periódica Hiperpotasémica/patología , Fenotipo , ARN Mensajero/genética , Sensibilidad y Especificidad , Canales de Sodio/genética
16.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33855971

RESUMEN

Loss-of-function mutations of SCN1A encoding the pore-forming α subunit of the NaV1.1 neuronal sodium channel cause a severe developmental epileptic encephalopathy, Dravet syndrome (DS). In this issue of the JCI, Chen, Luo, Gao, et al. describe a phenocopy for DS in mice deficient for posttranslational conjugation with neural precursor cell expressed, developmentally downregulated 8 (NEDD8) (neddylation), selectively engineered in inhibitory interneurons. Pursuing the possibility that this phenotype is also caused by loss of NaV1.1, Chen, Luo, Gao, and colleagues show that interneuron excitability and GABA release are impaired, NaV1.1 degradation rate is increased with a commensurate decrease of NaV1.1 protein, and NaV1.1 is a substrate for neddylation. These findings establish neddylation as a mechanism for stabilizing NaV1.1 subunits and suggest another pathomechanism for epileptic sodium channelopathy.


Asunto(s)
Canalopatías , Epilepsias Mioclónicas , Epilepsia , Animales , Canalopatías/genética , Epilepsias Mioclónicas/genética , Epilepsia/genética , Interneuronas , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética
17.
J Gen Physiol ; 153(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463712

RESUMEN

Mutations in the voltage sensor domain (VSD) of CaV1.1, the α1S subunit of the L-type calcium channel in skeletal muscle, are an established cause of hypokalemic periodic paralysis (HypoPP). Of the 10 reported mutations, 9 are missense substitutions of outer arginine residues (R1 or R2) in the S4 transmembrane segments of the homologous domain II, III (DIII), or IV. The prevailing view is that R/X mutations create an anomalous ion conduction pathway in the VSD, and this so-called gating pore current is the basis for paradoxical depolarization of the resting potential and weakness in low potassium for HypoPP fibers. Gating pore currents have been observed for four of the five CaV1.1 HypoPP mutant channels studied to date, the one exception being the charge-conserving R897K in R1 of DIII. We tested whether gating pore currents are detectable for the other three HypoPP CaV1.1 mutations in DIII. For the less conserved R1 mutation, R897S, gating pore currents with exceptionally large amplitude were observed, correlating with the severe clinical phenotype of these patients. At the R2 residue, gating pore currents were detected for R900G but not R900S. These findings show that gating pore currents may occur with missense mutations at R1 or R2 in S4 of DIII and that the magnitude of this anomalous inward current is mutation specific.


Asunto(s)
Parálisis Periódica Hipopotasémica , Canales de Calcio Tipo L/genética , Humanos , Parálisis Periódica Hipopotasémica/genética , Potenciales de la Membrana , Músculo Esquelético , Mutación , Mutación Missense
18.
J Gen Physiol ; 153(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546289

RESUMEN

Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.


Asunto(s)
Canales de Calcio Tipo L , Contracción Muscular , Canales de Calcio Tipo L/metabolismo , Fenómenos Electrofisiológicos , Humanos , Cinética , Potenciales de la Membrana
19.
J Physiol ; 588(Pt 11): 1887-95, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20156847

RESUMEN

Mutations of voltage-gated ion channels cause several channelopathies of skeletal muscle, which present clinically with myotonia, periodic paralysis, or a combination of both. Expression studies have revealed both loss-of-function and gain-of-function defects for the currents passed by mutant channels. In many cases, these functional changes could be mechanistically linked to the defects of fibre excitability underlying myotonia or periodic paralysis. One remaining enigma was the basis for depolarization-induced weakness in hypokalaemic periodic paralysis (HypoPP) arising from mutations in either sodium or calcium channels. Curiously, 14 of 15 HypoPP mutations are at arginines in S4 voltage sensors, and recent observations show that these substitutions support an alternative pathway for ion conduction, the gating pore, that may be the source of the aberrant depolarization during an attack of paralysis.


Asunto(s)
Canalopatías/genética , Activación del Canal Iónico/genética , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Animales , Canalopatías/fisiopatología , Electrofisiología , Humanos , Activación del Canal Iónico/fisiología , Fibras Musculares Esqueléticas/fisiología , Enfermedades Musculares/fisiopatología , Mutación Missense
20.
Front Neurol ; 11: 77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117035

RESUMEN

The phenotypic spectrum associated with the skeletal muscle voltage-gated sodium channel gene (SCN4A) has expanded with advancements in genetic testing. Autosomal dominant SCN4A mutations were first linked to hyperkalemic periodic paralysis, then subsequently included paramyotonia congenita, several variants of myotonia, and finally hypokalemic periodic paralysis. Biallelic recessive mutations were later identified in myasthenic myopathy and in infants showing a severe congenital myopathy with hypotonia. We report a patient with a pathogenic de novo SCN4A variant, c.2386C>G p.L769V at a highly conserved leucine. The phenotype was manifest at birth with arthrogryposis multiplex congenita, severe episodes of bronchospasm that responded immediately to carbamazepine therapy, and electromyographic evidence of widespread myotonia. Another de novo case of p.L769V has been reported with hip dysplasia, scoliosis, myopathy, and later paramyotonia. Expression studies of L796V mutant channels showed predominantly gain-of-function changes, that included defects of slow inactivation. Computer simulations of muscle excitability reveal a strong predisposition to myotonia with exceptionally prolonged bursts of discharges, when the L796V defects are included. We propose L769V is a pathogenic variant, that along with other cases in the literature, defines a new dominant SCN4A disorder of myotonic myopathy with secondary congenital joint and skeletal involvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA