Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2205277119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252012

RESUMEN

Mucins are the main macrocomponents of the mucus layer that protects the digestive tract from pathogens. Fucosylation of mucins increases mucus viscoelasticity and its resistance to shear stress. These properties are altered in patients with ulcerative colitis (UC), which is marked by a chronic inflammation of the distal part of the colon. Here, we show that levels of Fucosyltransferase 8 (FUT8) and specific mucins are increased in the distal inflamed colon of UC patients. Recapitulating this FUT8 overexpression in mucin-producing HT29-18N2 colonic cell line increases delivery of MUC1 to the plasma membrane and extracellular release of MUC2 and MUC5AC. Mucins secreted by FUT8 overexpressing cells are more resistant to removal from the cell surface than mucins secreted by FUT8-depleted cells (FUT8 KD). FUT8 KD causes intracellular accumulation of MUC1 and alters the ratio of secreted MUC2 to MUC5AC. These data fit well with the Fut8-/- mice phenotype, which are protected from UC. Fut8-/- mice exhibit a thinner proximal colon mucus layer with an altered ratio of neutral to acidic mucins. Together, our data reveal that FUT8 modifies the biophysical properties of mucus by controlling levels of cell surface MUC1 and quantity and quality of secreted MUC2 and MUC5AC. We suggest that these changes in mucus viscoelasticity likely facilitate bacterial-epithelial interactions leading to inflammation and UC progression.


Asunto(s)
Colitis Ulcerosa , Fucosiltransferasas , Animales , Ratones , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Fucosiltransferasas/genética , Inflamación , Mucina 2/genética , Mucina 2/metabolismo , Células HT29
2.
Hum Mol Genet ; 30(15): 1413-1428, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33987651

RESUMEN

Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.


Asunto(s)
Canales de Cloruro/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Nefrolitiasis/genética , Nefrolitiasis/metabolismo , Animales , Fenómenos Biológicos , Línea Celular , Canales de Cloruro/metabolismo , Enfermedad de Dent/genética , Endocitosis/fisiología , Estudios de Asociación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Humanos , Hipercalciuria/genética , Túbulos Renales Proximales/metabolismo , Mutación , Nefrocalcinosis/genética , Nefrolitiasis/fisiopatología , Proteinuria/genética
3.
Nephrol Dial Transplant ; 38(6): 1497-1507, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36441012

RESUMEN

BACKGROUND: Dent's disease type 1 (DD1) is a rare X-linked nephropathy caused by CLCN5 mutations, characterized by proximal tubule dysfunction, including low molecular weight proteinuria (LMWP), hypercalciuria, nephrolithiasis-nephrocalcinosis, progressive chronic kidney disease (CKD) and kidney failure (KF). Current management is symptomatic and does not prevent disease progression. Here we describe the contemporary DD1 picture across Europe to highlight its unmet needs. METHODS: A physician-based anonymous international e-survey supported by several European nephrology networks/societies was conducted. Questions focused on DD1 clinical features, diagnostic procedure and mutation spectra. RESULTS: A total of 207 DD1 male patients were reported; clinical data were available for 163 with confirmed CLCN5 mutations. Proteinuria was the most common manifestation (49.1%). During follow-up, all patients showed LMWP, 66.4% nephrocalcinosis, 44.4% hypercalciuria and 26.4% nephrolithiasis. After 5.5 years, ≈50% of patients presented with renal dysfunction, 20.7% developed CKD stage ≥3 and 11.1% developed KF. At the last visit, hypercalciuria was more frequent in paediatric patients than in adults (73.4% versus 19.0%). Conversely, nephrolithiasis, nephrocalcinosis and renal dysfunction were more prominent in adults. Furthermore, CKD progressed with age. Despite no clear phenotype/genotype correlation, decreased glomerular filtration rate was more frequent in subjects with CLCN5 mutations affecting the pore or CBS domains compared with those with early-stop mutations. CONCLUSIONS: Results from this large DD1 cohort confirm previous findings and provide new insights regarding age and genotype impact on CKD progression. Our data strongly support that DD1 should be considered in male patients with CKD, nephrocalcinosis/hypercalciuria and non-nephrotic proteinuria and provide additional support for new research opportunities.


Asunto(s)
Enfermedad de Dent , Cálculos Renales , Nefrocalcinosis , Insuficiencia Renal Crónica , Insuficiencia Renal , Masculino , Humanos , Nefrocalcinosis/etiología , Nefrocalcinosis/genética , Enfermedad de Dent/diagnóstico , Enfermedad de Dent/genética , Hipercalciuria/epidemiología , Hipercalciuria/genética , Mutación , Europa (Continente)/epidemiología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Proteinuria/genética , Canales de Cloruro/genética
4.
J Biol Chem ; 294(3): 816-826, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30482841

RESUMEN

Regulated mucin secretion is essential for the formation of the mucus layer that protects the underlying epithelial cells from foreign particles. Alterations in the quantity or quality of secreted mucins are therefore detrimental to airway and colon physiology. Based on various biochemical assays in several human cell lines, we report here that Na+/Ca2+ exchanger 2 (NCX2) works in conjunction with transient receptor potential cation channel subfamily M member 4 (TRPM4), and perhaps TRPM5, Na+ channels to control Ca2+-mediated secretion of both mucin 2 (MUC2) and MUC5AC from HT29-18N2 colonic cancer cells. Differentiated normal bronchial epithelial (NHBE) cells and tracheal cells from patients with cystic fibrosis (CFT1-LC3) expressed only TRPM4 and all three isoforms of NCXs. Blocking the activity of TRPM4 or NCX proteins abrogated MUC5AC secretion from NHBE and CFT1-LC3 cells. Altogether, our findings reveal that NCX and TRPM4/TRPM5 are both required for mucin secretion. We therefore propose that these two proteins could be potential pharmacological targets to control mucus-related pathologies such as cystic fibrosis.


Asunto(s)
Calcio/metabolismo , Células Caliciformes/metabolismo , Mucina 5AC/metabolismo , Mucina 2/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales Catiónicos TRPM/metabolismo , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Caliciformes/patología , Humanos , Mucina 5AC/genética , Mucina 2/genética , Intercambiador de Sodio-Calcio/genética , Canales Catiónicos TRPM/genética
5.
Hum Mol Genet ; 22(3): 519-30, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23100328

RESUMEN

T lymphocytes rely on a Ca(2+) signal known as store-operated calcium entry (SOCE) for their activation. This Ca(2+) signal is generated by activation of a T-cell receptor, depletion of endoplasmic reticulum (ER) Ca(2+) stores and activation of Ca(2+) release-activated Ca(2+) currents (I(CRAC)). Here, we report that the ER protein orosomucoid like 3 (ORMDL3), the product of the ORMDL3 gene associated with several autoimmune and/or inflammatory diseases, negatively modulates I(CRAC), SOCE, nuclear factor of activated T cells nuclear translocation and interleukin-2 production. ORMDL3 inhibits the Ca(2+) influx mechanism at the outer mitochondrial membrane, resulting in a Ca(2+)-dependent inhibition of I(CRAC) and reduced SOCE. The effect of ORMDL3 could be mimicked by interventions that decreased mitochondrial Ca(2+) influx and reverted by buffering of cytosolic Ca(2+) or activation of mitochondrial Ca(2+) influx. In conclusion, ORMDL3 modifies key steps in the process of T-lymphocyte activation, providing a functional link between the genetic associations of the ORMDL3 gene with autoimmune and/or inflammatory diseases.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Activación de Linfocitos , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interleucina-2/metabolismo , Transporte Iónico , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Orosomucoide/metabolismo , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
6.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670633

RESUMEN

Mutations in Cl-/H+ antiporter ClC-5 cause Dent's disease type 1 (DD1), a rare tubulopathy that progresses to renal fibrosis and kidney failure. Here, we have used DD1 human cellular models and renal tissue from DD1 mice to unravel the role of ClC-5 in renal fibrosis. Our results in cell systems have shown that ClC-5 deletion causes an increase in collagen I (Col I) and IV (Col IV) intracellular levels by promoting their transcription through the ß-catenin pathway and impairing their lysosomal-mediated degradation. Increased production of Col I/IV in ClC-5-depleted cells ends up in higher release to the extracellular medium, which may lead to renal fibrosis. Furthermore, our data have revealed that 3-mo-old mice lacking ClC-5 (Clcn5 +/- and Clcn5 -/- ) present higher renal collagen deposition and fibrosis than WT mice. Altogether, we describe a new regulatory mechanism for collagens' production and release by ClC-5, which is altered in DD1 and provides a better understanding of disease progression to renal fibrosis.


Asunto(s)
Canales de Cloruro , Fibrosis , Lisosomas , Ratones Noqueados , beta Catenina , Animales , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Lisosomas/metabolismo , Humanos , Ratones , beta Catenina/metabolismo , Fibrosis/metabolismo , Riñón/metabolismo , Riñón/patología , Colágeno Tipo I/metabolismo , Enfermedad de Dent/metabolismo , Enfermedad de Dent/genética , Proteolisis , Transducción de Señal
7.
Nefrologia (Engl Ed) ; 43 Suppl 2: 77-84, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38286722

RESUMEN

BACKGROUND AND OBJECTIVES: Dent's disease type 1 (DD1) is a rare X-linked hereditary pathology caused by CLCN5 mutations that is characterized mainly by proximal tubule dysfunction, hypercalciuria, nephrolithiasis/nephrocalcinosis, progressive chronic kidney disease, and low-weight proteinuria, the molecular hallmark of the disease. Currently, there is no specific curative treatment, only symptomatic and does not prevent the progression of the disease. In this study we have isolated and characterized urinary extracellular vesicles (uEVs) enriched in exosomes that will allow us to identify biomarkers associated with DD1 progression and a better understanding of the pathophysiological bases of the disease. MATERIALS AND METHODS: Through a national call from the Spanish Society of Nephrology (SEN) and the Spanish Society of Pediatric Nephrology (AENP), urine samples were obtained from patients and controls from different Spanish hospitals, which were processed to obtain the uEVS. The data of these patients were provided by the respective nephrologists and/or extracted from the RENALTUBE registry. The uEVs were isolated by ultracentrifugation, morphologically characterized and their protein and microRNA content extracted. RESULTS: 25 patients and 10 controls were recruited, from which the urine was processed to isolate the uEVs. Our results showed that the relative concentration of uEVs/mL is lower in patients compared to controls (0.26 × 106 uEVs/mL vs 1.19 × 106 uEVs/mL, p < 0.01). In addition, the uEVs of the patients were found to be significantly larger than those of the control subjects (mean diameter: 187.8 nm vs 143.6 nm, p < 0.01). Finally, our data demonstrated that RNA had been correctly extracted from both patient and control exosomes. CONCLUSIONS: In this work we describe the isolation and characterization of uEVs from patients with Dent 1 disease and healthy controls, that shall be useful for the subsequent study of differentially expressed cargo molecules in this pathology.


Asunto(s)
Enfermedad de Dent , Exosomas , MicroARNs , Nefrocalcinosis , Nefrolitiasis , Niño , Humanos , Enfermedad de Dent/genética , Enfermedad de Dent/metabolismo , Exosomas/metabolismo , Nefrocalcinosis/genética
8.
J Biol Chem ; 286(38): 32877-82, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21799020

RESUMEN

Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.


Asunto(s)
Asma/metabolismo , Canales Iónicos/metabolismo , Epitelio/metabolismo , Humanos , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Células Receptoras Sensoriales/metabolismo
9.
Hum Mol Genet ; 19(1): 111-21, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19819884

RESUMEN

Alterations of protein folding or Ca(2+) levels within the endoplasmic reticulum (ER) result in the unfolded-protein response (UPR), a process considered as an endogenous inducer of inflammation. Thereby, understanding how genetic factors modify UPR is particularly relevant in chronic inflammatory diseases such as asthma. Here we identified that ORMDL3, the only genetic risk factor recently associated to asthma in a genome wide study, alters ER-mediated Ca(2+) homeostasis and facilitates the UPR. Heterologous expression of human ER-resident transmembrane ORMDL3 protein increased resting cytosolic Ca(2+) levels and reduced ER-mediated Ca(2+) signaling, an effect reverted by co-expression with the sarco-endoplasmic reticulum Ca(2+) pump (SERCA). Increased ORMDL3 expression also promoted stronger activation of UPR transducing molecules and target genes while siRNA-mediated knock-down of endogenous ORMDL3 potentiated ER Ca(2+) release and attenuated the UPR. In conclusion, our findings are consistent with a model in which ORMDL3 binds and inhibits SERCA resulting in a reduced ER Ca(2+) concentration and increased UPR. Thus, we provide a first insight into the molecular mechanism explaining the association of ORMDL3 with proinflammatory diseases.


Asunto(s)
Asma/genética , Asma/patología , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Proteínas de la Membrana/genética , Estrés Fisiológico , Asma/metabolismo , Silenciador del Gen , Homeostasis , Humanos , Células Jurkat , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Transporte de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Respuesta de Proteína Desplegada
10.
Sci Rep ; 12(1): 6926, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484379

RESUMEN

Men are more prone to acute kidney injury (AKI) and chronic kidney disease (CKD), progressing to end-stage renal disease (ESRD) than women. Severity and capacity to regenerate after AKI are important determinants of CKD progression, and of patient morbidity and mortality in the hospital setting. To determine sex differences during injury and recovery we have generated a female and male renal ischemia/reperfusion injury (IRI) pig model, which represents a major cause of AKI. Although no differences were found in blood urea nitrogen (BUN) and serum creatinine (SCr) levels between both sexes, females exhibited higher mononuclear infiltrates at basal and recovery, while males showed more tubular damage at injury. Global transcriptomic analyses of kidney biopsies from our IRI pig model revealed a sexual dimorphism in the temporal regulation of genes and pathways relevant for kidney injury and repair, which was also detected in human samples. Enrichment analysis of gene sets revealed five temporal and four sexual patterns governing renal IRI and recovery. Overall, this study constitutes an extensive characterization of the time and sex differences occurring during renal IRI and recovery at gene expression level and offers a template of translational value for further study of sexual dimorphism in kidney diseases.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Lesión Renal Aguda/patología , Animales , Femenino , Expresión Génica , Humanos , Riñón/metabolismo , Masculino , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/patología , Porcinos
11.
Elife ; 112022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131032

RESUMEN

Fifteen percent of colorectal cancer (CRC) cells exhibit a mucin hypersecretory phenotype, which is suggested to provide resistance to immune surveillance and chemotherapy. We now formally show that CRC cells build a barrier to chemotherapeutics by increasing mucins' secretion. We show that low levels of KChIP3, a negative regulator of mucin secretion (Cantero-Recasens et al., 2018), is a risk factor for CRC patients' relapse in a subset of untreated tumours. Our results also reveal that cells depleted of KChIP3 are four times more resistant (measured as cell viability and DNA damage) to chemotherapeutics 5-fluorouracil + irinotecan (5-FU+iri.) compared to control cells, whereas KChIP3-overexpressing cells are 10 times more sensitive to killing by chemotherapeutics. A similar increase in tumour cell death is observed upon chemical inhibition of mucin secretion by the sodium/calcium exchanger (NCX) blockers (Mitrovic et al., 2013). Finally, sensitivity of CRC patient-derived organoids to 5-FU+iri. increases 40-fold upon mucin secretion inhibition. Reducing mucin secretion thus provides a means to control chemoresistance of mucinous CRC cells and other mucinous tumours.


Asunto(s)
Neoplasias Colorrectales/fisiopatología , Resistencia a Antineoplásicos/fisiología , Mucinas/fisiología , Antimetabolitos Antineoplásicos/farmacología , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Irinotecán/farmacología , Proteínas de Interacción con los Canales Kv/genética , Mucina 5AC/genética , Mucina 5AC/metabolismo , Mucina-1 , Mucinas/biosíntesis , Mucinas/genética , Recurrencia Local de Neoplasia , Proteínas Represoras/genética , Factores de Riesgo
12.
J Biol Chem ; 285(36): 27532-5, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20639579

RESUMEN

Transient receptor potential cation channels of the vanilloid subfamily (TRPV) participate in the generation of Ca(2+) signals at different locations of the respiratory system, thereby controlling its correct functioning. TRPV1 expression and activity appear to be altered under pathophysiological conditions such as chronic cough and airway hypersensitivity, whereas TRPV4 single nucleotide polymorphisms (SNP) are associated with chronic obstructive pulmonary disease. However, to date, there is no information about the genetic impact of either TRPV1 or TRPV4 on asthma pathophysiology. We now report on the association of two functional SNPs, TRPV1-I585V and TRPV4-P19S, with childhood asthma. Both SNPs were genotyped in a population of 470 controls without respiratory symptoms and 301 asthmatics. Although none of the SNPs modified the risk of suffering from asthma, carriers of the TRPV1-I585V genetic variant showed a lower risk of current wheezing (odds ratio = 0.51; p = 0.01), a characteristic of active asthma, or cough (odds ratio = 0.57; p = 0.02). Functional analysis of TRPV1-I585V, using the Ca(2+)-sensitive dye fura-2 to measure intracellular [Ca(2+)] concentrations, revealed a decreased channel activity in response to two typical TRPV1 stimuli, heat and capsaicin. On the other hand, TRPV4-P19S, despite its loss-of-channel function, showed no significant association with asthma or the presence of wheezing. Our data suggest that genetically determined level of TRPV1 activity is relevant for asthma pathophysiology.


Asunto(s)
Asma/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Asma/fisiopatología , Niño , Células HeLa , Humanos
14.
Elife ; 72018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272559

RESUMEN

Regulated mucin secretion from specialized goblet cells by exogenous agonist-dependent (stimulated) and -independent (baseline) manner is essential for the function of the epithelial lining. Over extended periods, baseline release of mucin can exceed quantities released by stimulated secretion, yet its regulation remains poorly characterized. We have discovered that ryanodine receptor-dependent intracellular Ca2+ oscillations effect the dissociation of the Ca2+-binding protein, KChIP3, encoded by KCNIP3 gene, from mature mucin-filled secretory granules, allowing for their exocytosis. Increased Ca2+ oscillations, or depleting KChIP3, lead to mucin hypersecretion in a human differentiated colonic cell line, an effect reproduced in the colon of Kcnip3-/- mice. Conversely, overexpressing KChIP3 or abrogating its Ca2+-sensing ability, increases KChIP3 association with granules, and inhibits baseline secretion. KChIP3 therefore emerges as the high-affinity Ca2+ sensor that negatively regulates baseline mucin secretion. We suggest KChIP3 marks mature, primed mucin granules, and functions as a Ca2+ oscillation-dependent brake to control baseline secretion. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Colon/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Mucina 5AC/metabolismo , Animales , Células Caliciformes/metabolismo , Células HEK293 , Células HT29 , Humanos , Proteínas de Interacción con los Canales Kv/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mucina 5AC/genética , Vesículas Secretoras/metabolismo
15.
Elife ; 2: e00658, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23741618

RESUMEN

Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca(2+)-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca(2+) signal. ATP-induced MUC5AC secretion depended strongly on Ca(2+) influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca(2+) entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca(2+) and by inhibition of the Na(+)/Ca(2+) exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na(+) entry to promote Ca(2+) uptake via an NCX to trigger MUC5AC secretion. DOI:http://dx.doi.org/10.7554/eLife.00658.001.


Asunto(s)
Calcio/metabolismo , Colon/metabolismo , Células Caliciformes/metabolismo , Mucinas/metabolismo , Canales Catiónicos TRPM/fisiología , Colon/citología , Células Caliciformes/citología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Humanos , Canales Catiónicos TRPM/metabolismo , Acetato de Tetradecanoilforbol/farmacología
17.
Dev Cell ; 20(5): 652-62, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21571222

RESUMEN

Actin-severing proteins ADF/cofilin are required for the sorting of secretory cargo at the trans-Golgi network (TGN) in mammalian cells. How do these cytoplasmic proteins interact with the cargoes in the lumen of the TGN? Put simply, how are these two sets of proteins connected across the TGN membrane? Mass spectrometry of cofilin1 immunoprecipitated from HeLa cells revealed the presence of actin and the Ca(2+) ATPase SPCA1. Moreover, cofilin1 was localized to the TGN and bound to SPCA1 via dynamic actin. SPCA1 knockdown, like ADF/cofilin1 knockdown, inhibited Ca(2+) uptake into the TGN and caused missorting of secretory cargo. These defects were rescued by the overexpression of the TGN-localized SPCA1. We propose that ADF/cofilin-dependent severing of actin filaments exposes and promotes the activation of SPCA1, which pumps Ca(2+) into the lumen of the TGN for the sorting of the class of secretory cargo that binds Ca(2+).


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Destrina/metabolismo , Retículo Endoplásmico/metabolismo , Red trans-Golgi/metabolismo , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Células Cultivadas , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA