Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 36(36): 9454-71, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605619

RESUMEN

UNLABELLED: All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfß signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfß signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfßRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. SIGNIFICANCE STATEMENT: Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional levels when enough cells are made) or counting of cell divisions or cell number. The latter applies to the retina, where cell number is regulated by negative feedback signals, which arrest differentiation of particular cell types at threshold levels. Herein, we show that Pten is a critical regulator of amacrine cell number in the retina, acting via multiple downstream pathways. Our studies provide molecular insights into how PTEN loss in humans may lead to uncontrolled cell division in several pathological conditions.


Asunto(s)
Células Amacrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Fosfohidrolasa PTEN/metabolismo , Retina , Transducción de Señal/genética , Factores de Edad , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proliferación Celular/genética , Embrión de Mamíferos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt , Retina/citología , Retina/embriología , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Bastones/fisiología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
2.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551961

RESUMEN

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Asunto(s)
Células Amacrinas , Adhesión Celular , Endocitosis , Fosfohidrolasa PTEN , Retina , Vía de Señalización Wnt , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Retina/metabolismo , Ratones , Células Amacrinas/metabolismo , Ratones Noqueados , Transporte de Proteínas , Proteínas Wnt/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética
3.
Int J Neuropsychopharmacol ; 12(9): 1195-208, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19275776

RESUMEN

Increased responsiveness to stress plays an important role in the manifestation of schizophrenia symptoms. Evidence indicates that the prefrontal cortex (PFC), and dopamine neurotransmission in the PFC in particular, is involved in the modulation of stress responsiveness. Decreased dopaminergic activity and loss of dopamine fibres have been reported in PFC in schizophrenia patients. Consequently, it was hypothesized that depletion of dopamine in PFC may facilitate increased stress responsiveness. Adult Sprague-Dawley rats received injections of 6-hydroxydopamine or saline bilaterally into the medial PFC (mPFC) following desipramine pretreatment to selectively deplete dopaminergic fibres. Following a 3-wk recovery period, the lesioned and control rats received injections of a D1 or D2 dopamine receptor agonist or vehicle into the mPFC and were immediately subjected to forced swimming as a stressor. Results showed that frequency of locomotion and rearing, behavioural measures indicative of increased dopaminergic activity in the nucleus accumbens (NAc), were significantly increased following stress in prefrontal cortical dopamine-depleted rats. This effect was significantly ameliorated by infusions of a D1 dopamine receptor agonist directly into the mPFC in a dose-dependent manner but not by infusion of a D2 dopamine receptor agonist. In addition, stress-induced behavioural changes in prefrontal cortical dopamine-depleted rats were significantly reduced following selective discrete infusions of a D2 dopamine receptor antagonist into the NAc shell. The results suggest that dopaminergic transmission via D1 receptors in the mPFC modulates D2 dopamine receptor-mediated stress responsiveness in the NAc, a feature that may be disrupted in schizophrenia patients.


Asunto(s)
Conducta Animal , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Desipramina/administración & dosificación , Agonistas de Dopamina/administración & dosificación , Antagonistas de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Relación Dosis-Respuesta a Droga , Infusiones Parenterales , Inyecciones Intraperitoneales , Locomoción , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Oxidopamina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Quinpirol/administración & dosificación , Racloprida/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor Cross-Talk , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Natación
4.
Dis Model Mech ; 11(5)2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29716894

RESUMEN

PTEN hamartoma tumour syndrome (PHTS) is a heterogeneous group of rare, autosomal dominant disorders associated with PTEN germline mutations. PHTS patients routinely develop hamartomas, which are benign tissue overgrowths comprised of disorganized 'normal' cells. Efforts to generate PHTS animal models have been largely unsuccessful due to the early lethality of homozygous germline mutations in Pten, together with the lack of hamartoma formation in most conditional mutants generated to date. We report herein a novel PHTS mouse model that reproducibly forms hamartoma-like lesions in the central retina by postnatal day 21. Specifically, we generated a Pten conditional knockout (cKO) using a retinal-specific Pax6::Cre driver that leads to a nearly complete deletion of Pten in the peripheral retina but produces a mosaic of 'wild-type' and Pten cKO cells centrally. Structural defects were only observed in the mosaic central retina, including in Müller glia and in the outer and inner limiting membranes, suggesting that defective mechanical integrity partly underlies the hamartoma-like pathology. Finally, we used this newly developed model to test whether rapamycin, an mTOR inhibitor that is currently the only PHTS therapy, can block hamartoma growth. When administered in the early postnatal period, prior to hamartoma formation, rapamycin reduces hamartoma size, but also induces new morphological abnormalities in the Pten cKO retinal periphery. In contrast, administration of rapamycin after hamartoma initiation fails to reduce lesion size. We have thus generated and used an animal model of retinal PHTS to show that, although current therapies can reduce hamartoma formation, they might also induce new retinal dysmorphologies.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Síndrome de Hamartoma Múltiple/patología , Retina/patología , Animales , Animales Recién Nacidos , División Celular , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Síndrome de Hamartoma Múltiple/tratamiento farmacológico , Ratones Noqueados , Mosaicismo , Mutación/genética , Neuroglía/metabolismo , Neuroglía/patología , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
5.
PLoS One ; 7(3): e32795, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403711

RESUMEN

BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Retina/citología , Retina/metabolismo , Células Amacrinas/citología , Células Amacrinas/metabolismo , Células Amacrinas/efectos de la radiación , Animales , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Tamaño de la Célula/efectos de la radiación , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Técnicas de Inactivación de Genes , Luz , Ratones , Mutación , Neuritas/metabolismo , Neuritas/efectos de la radiación , Especificidad de Órganos , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Embarazo , Retina/efectos de la radiación , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Percepción Visual/efectos de la radiación
6.
J Vis Exp ; (52)2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21730943

RESUMEN

The ability to manipulate gene expression is the cornerstone of modern day experimental embryology, leading to the elucidation of multiple developmental pathways. Several powerful and well established transgenic technologies are available to manipulate gene expression levels in mouse, allowing for the generation of both loss- and gain-of-function models. However, the generation of mouse transgenics is both costly and time consuming. Alternative methods of gene manipulation have therefore been widely sought. In utero electroporation is a method of gene delivery into live mouse embryos(1,2) that we have successfully adapted(3,4). It is largely based on the success of in ovo electroporation technologies that are commonly used in chick(5). Briefly, DNA is injected into the open ventricles of the developing brain and the application of an electrical current causes the formation of transient pores in cell membranes, allowing for the uptake of DNA into the cell. In our hands, embryos can be efficiently electroporated as early as embryonic day (E) 11.5, while the targeting of younger embryos would require an ultrasound-guided microinjection protocol, as previously described(6). Conversely, E15.5 is the latest stage we can easily electroporate, due to the onset of parietal and frontal bone differentiation, which hampers microinjection into the brain. In contrast, the retina is accessible through the end of embryogenesis. Embryos can be collected at any time point throughout the embryonic or early postnatal period. Injection of a reporter construct facilitates the identification of transfected cells. To date, in utero electroporation has been most widely used for the analysis of neocortical development(1,2,3,4). More recent studies have targeted the embryonic retina(7,8,9) and thalamus(10,11,12). Here, we present a modified in utero electroporation protocol that can be easily adapted to target different domains of the embryonic CNS. We provide evidence that by using this technique, we can target the embryonic telencephalon, diencephalon and retina. Representative results are presented, first showing the use of this technique to introduce DNA expression constructs into the lateral ventricles, allowing us to monitor progenitor maturation, differentiation and migration in the embryonic telencephalon. We also show that this technique can be used to target DNA to the diencephalic territories surrounding the 3(rd) ventricle, allowing the migratory routes of differentiating neurons into diencephalic nuclei to be monitored. Finally, we show that the use of micromanipulators allows us to accurately introduce DNA constructs into small target areas, including the subretinal space, allowing us to analyse the effects of manipulating gene expression on retinal development.


Asunto(s)
ADN/administración & dosificación , Diencéfalo/fisiología , Electroporación/métodos , Técnicas de Transferencia de Gen , Retina/fisiología , Telencéfalo/fisiología , Animales , ADN/genética , Embrión de Mamíferos , Femenino , Ratones , Embarazo
7.
Neural Dev ; 2: 11, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17559664

RESUMEN

BACKGROUND: Organs are programmed to acquire a particular size during development, but the regulatory mechanisms that dictate when dividing progenitor cells should permanently exit the cell cycle and stop producing additional daughter cells are poorly understood. In differentiated tissues, tumor suppressor genes maintain a constant cell number and intact tissue architecture by controlling proliferation, apoptosis and cell dispersal. Here we report a similar role for two tumor suppressor genes, the Zac1 zinc finger transcription factor and that encoding the cytokine TGFbetaII, in the developing retina. RESULTS: Using loss and gain-of-function approaches, we show that Zac1 is an essential negative regulator of retinal size. Zac1 mutants develop hypercellular retinae due to increased progenitor cell proliferation and reduced apoptosis at late developmental stages. Consequently, supernumerary rod photoreceptors and amacrine cells are generated, the latter of which form an ectopic cellular layer, while other retinal cells are present in their normal number and location. Strikingly, Zac1 functions as a direct negative regulator of a rod fate, while acting cell non-autonomously to modulate amacrine cell number. We implicate TGFbetaII, another tumor suppressor and cytokine, as a Zac1-dependent amacrine cell negative feedback signal. TGFbetaII and phospho-Smad2/3, its downstream effector, are expressed at reduced levels in Zac1 mutant retinae, and exogenous TGFbetaII relieves the mutant amacrine cell phenotype. Moreover, treatment of wild-type retinae with a soluble TGFbeta inhibitor and TGFbeta receptor II (TGFbetaRII) conditional mutants generate excess amacrine cells, phenocopying the Zac1 mutant phenotype. CONCLUSION: We show here that Zac1 has an essential role in cell number control during retinal development, akin to its role in tumor surveillance in mature tissues. Furthermore, we demonstrate that Zac1 employs a novel cell non-autonomous strategy to regulate amacrine cell number, acting in cooperation with a second tumor suppressor gene, TGFbetaII, through a negative feedback pathway. This raises the intriguing possibility that tumorigenicity may also be associated with the loss of feedback inhibition in mature tissues.


Asunto(s)
Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Neuronas/metabolismo , Retina/embriología , Retina/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Recuento de Células , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Regulación hacia Abajo/genética , Retroalimentación Fisiológica/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Supresores de Tumor , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Neuronas/citología , Fenotipo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA