Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(4): 1407-1421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37876343

RESUMEN

Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Piel/irrigación sanguínea , Colágeno , Dermis , Tejido Adiposo , Ingeniería de Tejidos/métodos , Andamios del Tejido
2.
Mater Today Bio ; 18: 100550, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36713800

RESUMEN

Clinical settings often face significant obstacles in treating large acute wounds. The alternative of therapeutic approach is needed urgently. Hydrogels derived from natural or synthetic materials may be designed to perform a variety of functions for promoting wound healing. Herein, a 3D bioprinted hydrogel patch is designed for accelerating acute wound healing, which is fabricated with methacryloyl-substituted gelatin (GelMA) and silk fibroin (SilMA) dual-cross-linked by ultraviolet (UV) light. The GelMA with added silk fibroin (GelSilMA) shows improved biodegradation and mechanical properties. Furthermore, SilMA hydrogel can maintain a moisturized healing environment in wound area persistently with adequate degradation capacity. In vivo, GelSilMA (G-S) hydrogel can help to speed wound closure by the improved microenvironment for epidermal tissue regeneration and endogenous collagen generation accordingly. In summary, the G-S hydrogel patch can accelerate acute wound healing efficiently in a relatively simple and inexpensive manner.

3.
Acta Biomater ; 170: 464-478, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657662

RESUMEN

Tissue-engineered skin is ideal for clinical wound repair. Restoration of skin tissue defects using tissue-engineered skin remains a challenge owing to insufficient vascularisation. In our previous study, we developed a 3D bioprinted model with confined force loading and demonstrated that the confined force can affect vascular branching, which is regulated by the YAP signalling pathway. The mechanical properties of the model must be optimised to suture the wound edges. In this study, we explored the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularisation and wound healing. The shape of the GelMA-HAMA-fibrin scaffold containing 3% GelMA was affected by the confined forces produced by the embedded cells. The GelMA-HAMA-fibrin scaffold was easy to print, had optimal mechanical properties, and was biocompatible. The constructs were successfully sutured together after 14 d of culture. Scaffolds seeded with cells were transplanted into skin tissue defects in nude mice, demonstrating that the cell-seeded GelMA-HAMA-fibrin scaffold, under confined force loading, promoted neovascularisation and wound restoration by enhancing blood vessel connections, creating a patterned surface, growth factors, and collagen deposition. These results provide further insights into the production of hydrogel composite materials as tissue-engineered scaffolds under an internal mechanical load that can enhance vascularisation and offer new treatment methods for wound healing. STATEMENT OF SIGNIFICANCE: Tissue-engineered skin is ideal for use in clinical wound repair. However, treatment of tissue defects using synthetic scaffolds remains challenging, mainly due to slow and insufficient vascularization. Our previous study developed a 3D bioprinted model with confined force loading, and demonstrated that confined force can affect vascular branching regulated by the YAP signal pathway. The mechanical properties of the construct need to be optimized for suturing to the edges of wounds. Here, we investigated the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularization in vitro and wound healing in vivo. Our findings provide new insight into the development of degradable macroporous composite materials with mechanical stimulation as tissue-engineered scaffolds with enhanced vascularization, and also provide new treatment options for wound healing.

4.
Stem Cells Int ; 2022: 1474273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045954

RESUMEN

Skin epidermal stem cells (EpSCs) play a critical role in wound healing and are ideal seed cells for skin tissue engineering. Exosomes from human adipose-derived stem cells (ADSC-Exos) promote human EpSC proliferation, but the underlying mechanism remains unclear. Here, we investigated the effect of miR-100-5p, one of the most abundant miRNAs in ADSC-Exos, on the proliferation of human EpSCs and explored the mechanisms involved. MTT and BrdU incorporation assays showed that miR-100-5p mimic transfection promoted EpSC proliferation in a time-dependent manner. Cell cycle analysis showed that miR-100-5p mimic transfection significantly decreased the percentage of cells in the G1 phase and increased the percentage of cells in the G2/M phase. Myotubularin-related protein 3 (MTMR3), a lipid phosphatase, was identified as a direct target of miR-100-5p. Knockdown of MTMR3 in EpSCs by RNA interference significantly enhanced cell proliferation, decreased the percentage of cells in the G1 phase and increased the percentage of cells in the S phase. Overexpression of MTMR3 reversed the proproliferative effect of miR-100-5p on EpSCs, indicating that miR-100-5p promoted EpSC proliferation by downregulating MTMR3. Mechanistic studies showed that transfection of EpSCs with miR-100-5p mimics elevated the intracellular PIP3 level, induced AKT and ERK phosphorylation, and upregulated cyclin D1, E1, and A2 expression, which could be attenuated by MTMR3 overexpression. Consistently, intradermal injection of ADSC-Exos or miR-100-5p-enriched ADSC-Exos into cultured human skin tissues significantly reduced MTMR3 expression and increased the thickness of the epidermis and the number of EpSCs in the basal layer of the epidermis. The aforementioned effect of miR-100-5p-enriched ADSC-Exos was stronger than that of ADSC-Exos and was reversed by MTMR3 overexpression. Collectively, our findings indicate that miR-100-5p promotes EpSC proliferation through MTMR3-mediated elevation of PIP3 and activation of AKT and ERK. miR-100-5p-enriched ADSC-Exos can be used to treat skin wound and expand EpSCs for generating epidermal autografts and engineered skin equivalents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA