RESUMEN
Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1ß, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1ß, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Linfocitos T CD8-positivos/inmunología , Proteínas de Unión al Calcio/inmunología , Células Dendríticas/inmunología , Memoria Inmunológica , Inflamasomas/inmunología , Interferón gamma/inmunología , Animales , Flagelina/inmunología , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Ratones , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Transducción de Señal/inmunología , Bazo/inmunología , Receptores Toll-Like/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunologíaRESUMEN
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes. Serine palmitoyltransferase (SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway. The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT (ssSPTs). However, whether LCB1 is modified and how such modification might regulate SPT activity have to date been unclear. Here, we show that activation of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6 by upstream MKK9 and treatment with Flg22 (a pathogen-associated molecular pattern) increases SPT activity and induces the accumulation of sphingosine long-chain base t18:0 in Arabidopsis thaliana, with activated MPK3 and MPK6 phosphorylating AtLCB1. Phosphorylation of AtLCB1 strengthened its binding with AtLCB2b, promoted its binding with ssSPTs, and stimulated the formation of higher order oligomeric and active SPT complexes. Our findings therefore suggest a novel regulatory mechanism for SPT activity.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Serina C-Palmitoiltransferasa/metabolismo , Arabidopsis/metabolismo , Fosforilación , Esfingolípidos/metabolismo , Proteínas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/metabolismoRESUMEN
Microbes employ a remarkably intricate electron transport system to extract energy from the environment. The respiratory cascade of bacteria culminates in the terminal transfer of electrons onto higher redox potential acceptors in the extracellular space. This general and inducible mechanism of electron efflux during normal bacterial proliferation leads to a characteristic fall in bulk redox potential (Eh), the degree of which is dependent on growth phase, the microbial taxa, and their physiology. Here, we show that the general reducing power of bacteria can be subverted to induce the abiotic production of a carbon-centered radical species for targeted bioorthogonal molecular synthesis. Using two species, Escherichia coli and Salmonella enterica serovar Typhimurium as model microbes, a common redox active aryldiazonium salt is employed to intervene in the terminal respiratory electron flow, affording radical production that is mediated by native redox-active molecular shuttles and active bacterial metabolism. The aryl radicals are harnessed to initiate and sustain a bioorthogonal controlled radical polymerization via reversible addition-fragmentation chain transfer (BacRAFT), yielding a synthetic extracellular matrix of "living" vinyl polymers with predetermined molecular weight and low dispersity. The ability to interface the ubiquitous reducing power of bacteria into synthetic materials design offers a new means for creating engineered living materials with promising adaptive and self-regenerative capabilities.
Asunto(s)
Transporte de Electrón/fisiología , Escherichia coli/metabolismo , Radicales Libres/metabolismo , Ácidos Polimetacrílicos/metabolismo , Salmonella typhimurium/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo , Radicales Libres/química , Metacrilatos/química , Metacrilatos/metabolismo , Oxidación-Reducción , PolimerizacionRESUMEN
Mucosal-associated invariant T (MAIT) cells produce inflammatory cytokines and cytotoxic granzymes in response to by-products of microbial riboflavin synthesis. Although MAIT cells are protective against some pathogens, we reasoned that they might contribute to pathology in chronic bacterial infection. We observed MAIT cells in proximity to Helicobacter pylori bacteria in human gastric tissue, and so, using MR1-tetramers, we examined whether MAIT cells contribute to chronic gastritis in a mouse H. pylori SS1 infection model. Following infection, MAIT cells accumulated to high numbers in the gastric mucosa of wild-type C57BL/6 mice, and this was even more pronounced in MAIT TCR transgenic mice or in C57BL/6 mice where MAIT cells were preprimed by Ag exposure or prior infection. Gastric MAIT cells possessed an effector memory Tc1/Tc17 phenotype, and were associated with accelerated gastritis characterized by augmented recruitment of neutrophils, macrophages, dendritic cells, eosinophils, and non-MAIT T cells and by marked gastric atrophy. Similarly treated MR1-/- mice, which lack MAIT cells, showed significantly less gastric pathology. Thus, we demonstrate the pathogenic potential of MAIT cells in Helicobacter-associated immunopathology, with implications for other chronic bacterial infections.
Asunto(s)
Gastritis/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Adulto , Animales , Línea Celular Tumoral , Femenino , Mucosa Gástrica/inmunología , Humanos , Memoria Inmunológica/inmunología , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Linfocitos T Citotóxicos/inmunologíaRESUMEN
T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance.
Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Activación de Linfocitos/inmunología , Redes y Vías Metabólicas , Pirimidinas/metabolismo , Riboflavina/metabolismo , Subgrupos de Linfocitos T/inmunología , Amino Azúcares/química , Amino Azúcares/inmunología , Amino Azúcares/metabolismo , Presentación de Antígeno/inmunología , Antígenos Bacterianos/química , Glioxal/química , Glioxal/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Ligandos , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Conformación Molecular , Membrana Mucosa/inmunología , Pirimidinas/química , Pirimidinas/inmunología , Piruvaldehído/química , Piruvaldehído/metabolismo , Riboflavina/biosíntesis , Riboflavina/inmunología , Bases de Schiff/química , Subgrupos de Linfocitos T/citología , Uracilo/análogos & derivados , Uracilo/química , Uracilo/inmunología , Uracilo/metabolismo , Complejo Vitamínico B/inmunología , Complejo Vitamínico B/metabolismoRESUMEN
Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Masculino , Ratones , Ratones Endogámicos BALB CRESUMEN
Tob1, a Tob/BTG anti-proliferative protein family member, functions as a tumour suppressor in many cancers. Here, we reveal a unique oncogenic role of Tob1 in colon cancer. Tob1 expression was upregulated during colon cancer progression, was significantly correlated with tumour size and tumour differentiation, and was a prognostic indicator of colon cancer. Unlike in other cancers, where nuclear Tob1 performs anticancer activity, Tob1 is predominantly localized in the cytosol of colon cancer cells, where this protein binds and stabilizes ß-catenin to activate Wnt/ß-catenin signalling, which in turn enhances Tob1 expression, thus forming a positive feedback loop to promote cell proliferation. Moreover, Tob1 deficiency led to reduced tumourigenesis in AOM/DSS-treated and ApcMin/+ mice. Our findings provide important insights into a previously unrecognized oncogenic role of Tob1 in colon cancer and suggest that Tob1 is an adverse prognostic factor and therapeutic target for colon cancer.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Expresión Génica , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores de Tumor , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Pronóstico , Curva ROCRESUMEN
Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats.
Asunto(s)
Variación Genética , Genoma Bacteriano/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Animales , Antiinfecciosos/farmacología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Genes Bacterianos/genética , Genómica/métodos , Humanos , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/patogenicidad , Filogenia , Dinámica Poblacional , Salud Pública/estadística & datos numéricos , Salud Pública/tendencias , Análisis de Secuencia de ADN , Especificidad de la Especie , Virulencia/genéticaRESUMEN
The anti-inflammatory and anti-tumor effects of berberine, a traditional Chinese medicine, were separately discovered in pathological intestinal tissues. However, whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CACRC) remains unknown. In the present study, we found that berberine effectively inhibited colitis-associated tumorigenesis and colonic epithelium hyperproliferation in dextran sulfate sodium (DSS)-treated ApcMin/+ mice. A mechanistic study identified that these inhibitory effects of berberine occurred through blocking interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) expression in colonic macrophages. An in vitro study on cell lines identified that berberine treatment of Raw 264.7 macrophages resulted in conditioned media with fewer proliferative effects on a cell line with a heterozygous Apc mutation (Immorto-Min colonic epithelium, IMCE). EGFR-ERK signaling act downstream of berberine/pro-inflammatory cytokines axis to regulate CACRC cell proliferation. Furthermore, in vivo administration of IL-6 to DSS-treated ApcMin/+ mice effectively weakened the inhibitory effects of berberine on tumorigenesis and EGFR-ERK signaling in colon tissues. Altogether, the results of our studies have revealed that berberine inhibits the development of CACRC by interfering with inflammatory response-driven EGFR signaling in tumor cell growth. The findings of this study support the possibility that berberine and other anti-inflammatory drugs may be beneficial in the treatment of CACRC.
Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Anticarcinógenos/uso terapéutico , Berberina/uso terapéutico , Carcinogénesis/efectos de los fármacos , Colitis/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Anticarcinógenos/farmacología , Berberina/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colitis/inmunología , Colitis/metabolismo , Colitis/fisiopatología , Colon/efectos de los fármacos , Colon/inmunología , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/etiología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Células RAW 264.7 , Distribución AleatoriaRESUMEN
Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Adolescente , Antibacterianos/farmacología , Niño , Niño Hospitalizado , Preescolar , Humanos , Lactante , Recién Nacido , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/aislamiento & purificación , Pakistán/epidemiología , Filogenia , Análisis de Secuencia de ADNRESUMEN
Variable-number tandem repeats (VNTRs) mutate rapidly and can be useful markers for genotyping. While multilocus VNTR analysis (MLVA) is increasingly used in the detection and investigation of food-borne outbreaks caused by Salmonella enterica serovar Typhimurium (S. Typhimurium) and other bacterial pathogens, MLVA data analysis usually relies on simple clustering approaches that may lead to incorrect interpretations. Here, we estimated the rates of copy number change at each of the five loci commonly used for S. Typhimurium MLVA, during in vitro and in vivo passage. We found that loci STTR5, STTR6, and STTR10 changed during passage but STTR3 and STTR9 did not. Relative rates of change were consistent across in vitro and in vivo growth and could be accurately estimated from diversity measures of natural variation observed during large outbreaks. Using a set of 203 isolates from a series of linked outbreaks and whole-genome sequencing of 12 representative isolates, we assessed the accuracy and utility of several alternative methods for analyzing and interpreting S. Typhimurium MLVA data. We show that eBURST analysis was accurate and informative. For construction of MLVA-based trees, a novel distance metric, based on the geometric model of VNTR evolution coupled with locus-specific weights, performed better than the commonly used simple or categorical distance metrics. The data suggest that, for the purpose of identifying potential transmission clusters for further investigation, isolates whose profiles differ at one of the rapidly changing STTR5, STTR6, and STTR10 loci should be collapsed into the same cluster.
Asunto(s)
Análisis por Conglomerados , ADN Bacteriano/genética , Repeticiones de Minisatélite , Tipificación Molecular/métodos , Tasa de Mutación , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética , Genoma Bacteriano , Genotipo , Epidemiología Molecular/métodos , Infecciones por Salmonella/microbiología , Salmonella typhimurium/clasificaciónRESUMEN
Matrine, a clinical drug in China, has been used to treat viral hepatitis, cardiac arrhythmia and skin inflammations. Matrine also exhibits chemotherapeutic potential through its ability to trigger cancer cell death. However, the mechanisms involved are still largely unknown. The objective of this study was to investigate the major determinant for the cell death induced by matrine in human hepatocellular carcinoma. We use human hepatocellular carcinoma cell line HepG2 and human hepatocellular carcinoma xenograft in nude mice as models to study the action of matrine in hepatocellular cancers. We found that caspase-dependent and -independent Program Cell Death (PCD) occurred in matrine-treated HepG2 cells, accompanied by the decreasing of mitochondrial transmembrane potential and the increasing ROS production. Further studies showed that AIF released from the mitochondria to the nucleus, and silencing of AIF reduced the caspase-independent PCD induced by matrine. What's more, AIF nuclear translocation, and the subsequent cell death as well, was prevented by Bid inhibitor BI-6C9, Bid-targeted siRNA and ROS scavenger Tiron. In the in vivo study, matrine significantly attenuated tumor growth with AIF release from mitochondria into nucleus in nude mice. These data imply that matrine potently induce caspase-independent PCD in HepG2 cells through Bid-mediated AIF translocation.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Factor Inductor de la Apoptosis/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Quinolizinas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Femenino , Citometría de Flujo , Células Hep G2 , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto , MatrinasRESUMEN
Matrine, as a member of Sophora family, is an alkaloid found in plants, and produces plethora pharmacological effects, including anti-cancer effects. However, the mechanism involved remains largely unknown. This study is conducted to investigate the anti-cancer mechanisms of matrine in human esophageal cancer in vitro and in vivo. In human esophageal cancer cell Eca-109, matrine significantly decreased the cell viability in a dose-dependent manner, and induced apoptosis as well as cell cycle arrest in G0/G1 phase by up-regulation of P53 and P21. The expression of several apoptosis-related proteins in cells and tumor tissues were evaluated by Western blot analysis. We found that matrine induced cell apoptosis by down-regulation of the ratio of BCL-2/BID and increasing activation of caspase-9. Further studies indicated that matrine induced apoptosis of Eca-109 was through the mitochondria-mediated internal pathway, but not by death receptor-mediated extrinsic apoptotic pathway, which was confirmed by the fact that Bid translocated from the nucleus to mitochondria during the process of the apoptosis induced by matrine. In vivo study found that matrine effectively inhibited the tumor formation of Eca-109 cells in nude mice. Our study suggests that matrine could serve as a potential novel agent from natural products to treat esophageal cancer.
Asunto(s)
Alcaloides/farmacología , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Neoplasias Esofágicas/metabolismo , Mitocondrias/metabolismo , Quinolizinas/farmacología , Transducción de Señal/efectos de los fármacos , Alcaloides/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Neoplasias Esofágicas/patología , Humanos , Masculino , Ratones , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinolizinas/administración & dosificación , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , MatrinasRESUMEN
As a traditional anti-inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti-tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c-Myc, the target gene of Wnt pathway, was down-regulated 5.3-folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and the mechanism of which might be that berberine disrupted ß-catenin transfer to nucleus through up-regulating the expression of adenomatous polyposis coli (APC) gene and stabilized APC-ß-catenin complex. Berberine administration in ApcMin/+ mice exhibited fewer and smaller polyps in intestine, along with reduction in cyclin D1 and c-Myc expression. In clinical practice, oral administration of berberine also significantly reduced the familial adenomatous polyposis patients' polyp size along with the inhibition of cyclin D1 expression in polyp samples. These observations indicate that berberine inhibits colon tumour formation through inhibition of Wnt/ß-catenin signalling and berberine might be a promising drug for the prevention of colon cancer.
Asunto(s)
Poliposis Adenomatosa del Colon/tratamiento farmacológico , Anticarcinógenos/farmacología , Berberina/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Poliposis Adenomatosa del Colon/patología , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Adolescente , Adulto , Animales , Anticarcinógenos/uso terapéutico , Berberina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transporte de Proteínas , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven , beta Catenina/metabolismoRESUMEN
Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices.
Asunto(s)
Biopelículas , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas/metabolismo , Klebsiella pneumoniae/genética , Activación Transcripcional , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/genética , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Plásmidos , Unión ProteicaRESUMEN
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.
Asunto(s)
Berberina/uso terapéutico , Colitis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Colitis/inducido químicamente , Colon/citología , Colon/fisiopatología , Citocinas/efectos de los fármacos , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/fisiología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
In vivo tumor growth is characterized by a necrotic core generated by oxygen and nutrients gradients, which is replicated by in vitro three-dimensional (3D) tumor spheroids but not traditional two-dimensional cell monolayers. Gap junctions provide direct communication between adjacent cells and play a critical role in cancer development, but their effects are still debatable. In this study, we found that connexin 43 (Cx43) reduced the area of necrotic core in colon cancer 3D spheroids, thus providing a growth advantage. This impact is dependent on gap junction channel functions, as the channel blocker carbenoxolone or connexin channel death mutant reverses this effect. Additionally, enhanced glucose uptake was detected in Cx43-overexpressing spheroids, along with upregulated mTOR, downregulated AMPK signaling, increased ATP content, and enhanced oxygen consumption rate. Furthermore, the xenograft mouse model confirmed the growth advantage of Cx43 in vivo. RNAseq data and clinical information from The Cancer Genome Atlas (TCGA) database indicated a more heterogeneous expression pattern of Cx43 in colon cancer compared to normal colon tissue, and higher Cx43 level is associated with worse clinical outcomes. Our data suggest a novel function of connexin in tumor growth, that gap junctions may provide nutrients transmitting routes in lieu of vasculature to meet the increasing metabolic requirement of solid tumors.
Asunto(s)
Neoplasias del Colon , Conexina 43 , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Glucosa/metabolismo , Humanos , RatonesRESUMEN
Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.
Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Cápsulas Bacterianas/metabolismo , Cápsulas/análisis , Cápsulas/metabolismo , Humanos , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Antígenos O/análisis , Antígenos O/metabolismo , Polímeros/análisis , Polímeros/metabolismo , Azúcares/metabolismoRESUMEN
TNF is a pleiotropic cytokine that activates both anti- and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinase-defective mice (EGFR(wa2)) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokine-mediated inflammatory responses.
Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Receptor ErbB-2/metabolismo , Activación Transcripcional/genética , Factor de Necrosis Tumoral alfa/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Receptores ErbB/deficiencia , Receptores ErbB/genética , Regulación de la Expresión Génica/efectos de los fármacos , Intestinos/citología , Intestinos/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/genética , Activación Transcripcional/efectos de los fármacos , Familia-src Quinasas/metabolismoRESUMEN
Whilst researches elucidating a diversity of intracellular mechanisms, platinum-resistant epithelial ovarian cancer (EOC) remains a major challenge in the treatment of ovarian cancer. Here we report that Exo70, a key subunit of the exocyst complex, contributes to both innate and acquired cisplatin resistance of EOC. Upregulation of Exo70 is observed in EOC tissues and is related to platinum resistance and progression-free survival of EOC patients. Exo70 suppressed the cisplatin sensitivity of EOC cells through promoting exocytosis-mediated efflux of cisplatin. Moreover, cisplatin-induced autophagy-lysosomal degradation of Exo70 protein by modulating phosphorylation of AMPK and mTOR, thereby reducing the cellular resistance. However, the function was hampered during prolonged cisplatin treatment, which in turn stabilized Exo70 to facilitate the acquired cisplatin resistance of EOC cells. Knockdown of Exo70, or inhibiting exocytosis by Exo70 inhibitor Endosidin2, reversed the cisplatin resistance of EOC cells both in vitro and in vivo. Our results suggest that Exo70 overexpression and excessive stability contribute to innate and acquired cisplatin resistance through the increase in cisplatin efflux, and targeting Exo70 might be an approach to overcome cisplatin resistance in EOC treatment.