Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dis Aquat Organ ; 149: 33-45, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510819

RESUMEN

The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.


Asunto(s)
Lubina , Enfermedades de los Peces , Nocardia , Animales , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Úlcera/veterinaria
2.
Dis Aquat Organ ; 133(3): 253-261, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187732

RESUMEN

Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Antígenos de Histocompatibilidad Clase II , Polimorfismo Genético , Streptococcus agalactiae
3.
Fish Shellfish Immunol ; 82: 101-114, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30099139

RESUMEN

The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.


Asunto(s)
Cíclidos/genética , Cíclidos/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cíclidos/metabolismo , Proteína 58 DEAD Box/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Filogenia
4.
Fish Shellfish Immunol ; 73: 207-219, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29242132

RESUMEN

The nucleotide-binding oligomerization domain proteins NOD1, NOD2 and NLRC3 are cytoplasmic pattern recognition receptors (PRRs) of the Nod-like receptor (NLR) family. In the present study, the Nile tilapia (Oreochromis niloticus) NOD1 (ntNOD1), NOD2 (ntNOD2) and NLRC3 (ntNLRC3) genes were cloned and characterized. The full-length ntNOD1, ntNOD2 and ntNLRC3 genes were 3924, 3886 and 4574 bp, encoding 941, 986 and 1130 amino acids, respectively. The three Nod-like receptors have a NACHT domain and a C-terminal leucine-rich repeat (LRR) domain. In addition, ntNOD1 and ntNOD2 have a N-terminal CARD domain (ntNOD2 has two). Phylogenetic analysis showed that the three NLRs are highly conserved. Tissue expression analysis of the three receptors revealed that the highest mRNA and protein levels of ntNOD1, ntNOD2 and ntNLRC3 were in the spleen. The expression patterns of NLRs during embryonic development showed that the expression levels of ntNOD2 and ntNLRC3 significantly increased from 2 to 8 days post-fertilization (dpf). The expression levels of ntNOD1 significantly increased from 2 to 6 dpf, decreased at 7 dpf and then increased at 8 dpf. Upon stimulation with an intraperitoneal injection of Streptococcus agalactiae, expression levels of the ntNOD1, ntNOD2 and ntNLRC3 mRNA and protein were clearly altered in the blood, spleen, kidney, intestine and gill. Furthermore, after cotransfection with an NF-κB reporter plasmid, NF-κB activation in ntNOD1-overexpressing 293T cells significantly increased compared with that in control cells, before or after i-EDPA-stimulation. By contrast, compared with control, ntNOD2 and ntNLRC3 had no effect on NF-κB activation in 293T cells, when their potential ligands were not stimulated. However, after MDP-stimulation, ntNOD2 and ntNLRC3 overexpression increased NF-κB activation in 293T cells. NOD1 and NLRC3 were uniformly distributed throughout the cytoplasm in 293T cells, whereas NOD2 was distributed throughout the cytoplasm and nucleus. Our results indicate that the three Nod-like receptors are functionally conserved and may play pivotal roles in defense against pathogens such as Streptococcus agalactiae.


Asunto(s)
Cíclidos/genética , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Receptores de Reconocimiento de Patrones/genética , Animales , Cíclidos/metabolismo , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Filogenia , Receptores de Reconocimiento de Patrones/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/fisiología
5.
J Fish Biol ; 93(6): 1207-1215, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30345515

RESUMEN

The association between major histocompatibility complex (MHC) class IIA polymorphisms and the severity of infection by Streptococcus agalactiae was investigated using 40 susceptible and 40 resistant individuals of Nile tilapia Oreochromis niloticus. Twenty-five alleles were identified from 80 individuals, which belong to 22 major allele types. High polymorphism of mhcIIa gene and at least two loci were discovered in O. niloticus. In peptide-binding region (PBR) and non-PBR, the ratio of nonsynonymous substitution (dN) to synonymous substitution (dS) was 1.294 (>1) and 1.240 (>1), suggesting that the loci are evolving under positive balancing selection. Association analysis showed that the allele, orni-daa*0501, was significantly associated with resistance to S. agalactiae, while the alleles, orni-daa*1101, orni-daa*1301, orni-daa*1401 and orni-daa*1201, were associated with susceptibility to S. agalactiae. To confirm these correlations, another independent challenge experiment was performed in the Huizhou population of the O. niloticus. The frequency distribution showed that the orni-daa*1101 allele was significantly more frequent in the Huizhou-Susceptible group (HZ-SG) than in the Huizhou-Resistant group (HZ-RG) (P < 0.05), which was consistent with the first challenge. However, orni-daa*0501 did not present in HZ-SG and HZ-RG and the distribution frequencies of the orni-daa*1201, orni-daa*1301 and orni-daa*1401 alleles were not significantly more frequent in HZ-SG than in HZ-RG. These results indicate that the orni-daa*1101 allele confers susceptibility to S. agalactia infection. These results suggest that the diversity of exon 2 of mcaIIa alleles could be used to explore the association between disease susceptibility or resistance and the multiformity of mcaIIa and to achieve the molecular-assisted selection of O. niloticus with enhanced disease resistance.


Asunto(s)
Cíclidos/genética , Resistencia a la Enfermedad/genética , Enfermedades de los Peces/genética , Genes MHC Clase II/genética , Polimorfismo Genético , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae , Alelos , Secuencia de Aminoácidos , Animales , Cíclidos/microbiología , Clonación Molecular , Antígenos de Histocompatibilidad Clase II/química , Alineación de Secuencia , Infecciones Estreptocócicas/genética
6.
Dev Comp Immunol ; 127: 104300, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34673140

RESUMEN

Toll-like receptors (TLRs) play a critical role in the innate immune response of fish. In this study, we isolated the cDNA sequence of Nile tilapia TLR1 (OnTLR1). The deduced OnTLR1 protein contains a signal peptide, 7 leucine-rich repeats (LRRs), a C-terminal LRR (LRR-CT), a transmembrane region and a highly conserved TIR domain. In healthy Nile tilapia, the OnTLR1 transcript was broadly expressed in all examined tissues, with the highest expression levels in the spleen. After infection with Streptococcus agalactiae, the OnTLR1 transcripts were upregulated in the gill and kidney. After stimulation with polyinosinic-polycytidylic acid (poly(I:C)), the expression levels of OnTLR1 were significantly downregulated in the intestine, whereas OnTLR1 transcripts were significantly upregulated in the kidney. After challenge with lipopolysaccharide (LPS), the expression levels of OnTLR1 were significantly upregulated in the spleen and kidney. The subcellular localization showed that OnTLR1 was expressed in the cytoplasm. TLR1 significantly increased MyD88-dependent NF-κB activity. However, the results of a pull-down assay showed that OnTLR1 did not interact with MyD88 or TIRAP. Binding assays revealed the specificity of OnTLR1 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C) and LPS. Taken together, these findings suggest that OnTLR1, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Filogenia , Streptococcus agalactiae , Receptor Toll-Like 1/genética
7.
Mol Immunol ; 132: 60-78, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545626

RESUMEN

Toll-like receptors (TLRs) play a crucial role in the innate immune system, which is the first line of defence against pathogens and pathogenic products in fish. In the present study, we cloned the full-length cDNA and genome sequences of two TLR13 s (OnTLR13a, OnTLR13b) from Nile tilapia (Oreochromis niloticus). TLR family motifs, i.e., the leucine-rich repeat (LRR) domains and Toll/interleukin (IL)-1 receptor (TIR) domains, were conserved in the putative proteins OnTLR13a and OnTLR13b, with fifteen LRR domains and one TIR domain. Four exons and three introns were identified in the OnTLR13a genome sequence, and three exons and two introns were identified in the OnTLR13b genome sequence. In healthy Nile tilapia tissues, OnTLR13a and OnTLR13b were ubiquitously expressed in all 11 tested tissues/organs. The highest expression levels were observed in the spleen (OnTLR13a) and blood (OnTLR13b), and the lowest expression levels were observed in the liver (OnTLR13a) and stomach (OnTLR13b). The expression level of OnTLR13b at 5.5 days postfertilization (dpf) was significantly higher than that at the other 8 time points (2.5, 3.5, 4.5, 5, 6, 6.5, 7.5 and 8.5 dpf). Upon stimulation with an intraperitoneal injection of 200 µL (107 CFU/mL) Streptococcus agalactiae, the expression levels of OnTLR13a and OnTLR13b were significantly upregulated in the intestine and gill. After cotransfection with MyD88, OnTLR13a significantly increased MyD88-dependent NF-κB activation in 293 T cells. However, OnTLR13b significantly impaired MyD88-dependent NF-κB activation. In addition, TLR13a slightly increased MyD88-dependent AP-1 activation, and TLR13b significantly increased MyD88-dependent AP-1 activation. TLR13a significantly increased MyD88-dependent interferon-ß (IFN-ß) activation, and TLR13b had no effect on MyD88-dependent IFN-ß activation. These findings suggest that although the deduced protein structure of OnTLR13 is evolutionarily conserved between OnTLR13 and other TLR members, its signal transduction function is markedly different. Co-immunoprecipitation (Co-IP) assays showed that both OnTLR13a and OnTLR13b could interact with OnMyD88. RNA pulldown assays showed that TLR13a and TLR13b could combine with the 23S rRNA of S. agalactiae. These results indicate that TLR13a and TLR13b play important roles in the innate immune response against bacterial infection in Nile tilapia.


Asunto(s)
Cíclidos/genética , Cíclidos/inmunología , Inmunidad Innata/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Streptococcus agalactiae/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Secuencia de Aminoácidos , Animales , Sangre/metabolismo , Cíclidos/metabolismo , Cíclidos/microbiología , Exones , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Interferón beta/metabolismo , Intrones , Hígado/metabolismo , FN-kappa B/metabolismo , Filogenia , Dominios Proteicos , ARN Ribosómico 23S/genética , Alineación de Secuencia , Transducción de Señal/inmunología , Bazo/metabolismo , Factor de Transcripción AP-1/metabolismo
8.
Sci Rep ; 6: 36768, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824130

RESUMEN

The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.


Asunto(s)
Músculos/fisiología , Mioblastos/citología , Miosinas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Adhesión Celular , Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Miosinas/química , Oligonucleótidos/genética , Unión Proteica , Dominios Proteicos , Proteínas Supresoras de Tumor/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra , ras-GRF1/química
9.
Mech Dev ; 129(9-12): 263-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22820002

RESUMEN

The high mobility group (HMG) proteins constitute a superfamily of nuclear proteins that regulate the expression of a wide range of genes through architectural remodeling of the chromatin structure, and the formation of multiple protein complexes on promoter/enhancer regions, but their function in germ layer specification during early development is not clear. Here we show that hmgb genes regulate mesoderm formation and dorsoventral patterning both in zebrafish and Xenopus early embryos. Overexpression of hmgb3 blocks the expression of the pan-mesoderm gene no tail/Xbra and other ventrolateral mesoderm genes, and results in embryos with shortened anteroposterior axis, while overexpression of hmgb3EnR, which contains the engrailed repressor domain, most potently repressed no tail expression and mesoderm formation. However, hmgb3VP16, which contains the transcriptional activation domain of VP16, had an opposite effect, indicating that hmgb3 may function as a repressor during mesoderm induction and patterning. In addition, we show that hmgb3 inhibits target gene expression downstream of mesoderm-inducing factors. Furthermore, using reporter gene assays in Xenopus whole embryos, we show that hmgb3 differentially regulates the activation of various mesendoderm reporter genes. In particular, it up-regulates the goosecoid, but inhibits the Xbra reporter gene activation. Therefore, our results suggest that hmgb genes may function to fine-tune the specification and/or dorsoventral patterning of mesoderm during zebrafish and Xenopus development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/fisiología , Xenopus/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Proteínas Fetales , Proteína Goosecoide/genética , Proteína Goosecoide/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteína HMGB3/genética , Proteína HMGB3/metabolismo , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Activación Transcripcional/genética , Regulación hacia Arriba , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA