RESUMEN
Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.
Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Coenzima A Ligasas , Regulación hacia Abajo , Ácidos Grasos , Neoplasias Hepáticas , PPAR alfa , Receptor alfa X Retinoide , PPAR alfa/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/genética , Animales , Ácidos Grasos/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Células Hep G2 , Ratones Desnudos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones , Compuestos de Fenilurea/farmacología , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Metabolismo de los Lípidos/efectos de los fármacos , PiridinasRESUMEN
OBJECTIVES: Lung adenocarcinoma (LUAD) exhibits a higher fatality rate among all cancer types worldwide, yet the precise mechanisms underlying its initiation and progression remain unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) exert significant regulatory roles in cancer development and progression. Nevertheless, the precise involvement of lncRNA CYP4A22-AS1 in LUAD remains incompletely comprehended. METHODS: Bioinformatics analyses evaluated the expression level of CYP4A22-AS1 in lung adenocarcinoma and paracancer. The LUAD cell line with a high expression of CYP4A22-AS1 was constructed to evaluate the role of CYP4A22-AS1 in the proliferation and metastasis of LUAD by CCK8, scratch healing, transwell assays, and animal experiments. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. Luciferase reporter gene analyses, west-blotting, and qRT-PCR were carried out to reveal the interaction between CYP4A22-AS1, miR-205-5p/EREG, and miR-34c-5p/BCL-2 axes. RESULTS: CYP4A22-AS1 expression was significantly higher in LUAD tissues than in the adjacent tissues. Furthermore, we constructed a LUAD cell line with a high expression of CYP4A22-AS1 and noted that the high expression of CYP4A22-AS1 significantly enhanced the proliferation and metastasis of LUAD. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. CYP4A22-AS1 increased the expression of EREG and BCL-2 by reducing the expression of miR-205-5p and miR-34-5p and activating the downstream signaling pathway of EGFR and the anti-apoptotic signaling pathway of BCL-2, thereby triggering the proliferation and metastasis of LUAD. The transfection of miR-205-5p and miR-34-5p mimics inhibited the role of CYP4A22-AS1 in enhancing tumor progression. CONCLUSION: This study elucidates the molecular mechanism whereby CYP4A22-AS1 overexpression promotes LUAD progression through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes.
RESUMEN
Protein signaling complexes play important roles in prevention of several cancer types and can be used for development of targeted therapy. The roles of signaling complexes of phosphodiesterase 3B (PDE3B) and Rap guanine nucleotide exchange factor 3 (RAPGEF3), which are two important enzymes of cyclic adenosine monophosphate (cAMP) metabolism, in cancer have not been fully explored. In the current study, a natural product Kaempferol-3-O-(3'',4''-di-E-p-coumaroyl)-α-L-rhamnopyranoside designated as KOLR was extracted from Cinnamomum pauciflorum Nees leaves. KOLR exhibited higher cytotoxic effects against BxCP-3 pancreatic cancer cell line. In BxPC-3 cells, the KOLR could enhance the formation of RAPGEF 3/ PDE3B protein complex to inhibit the activation of Rap-1 and PI3K-AKT pathway, thereby promoting cell apoptosis and inhibiting cell metastasis. Mutation of RAPGEF3 G557A or low expression of PDE3B inactivated the binding action of KOLR resulting in KOLR resistance. The findings of this study show that PDE3B/RAPGEF3 complex is a potential therapeutic cancer target.
Asunto(s)
Cinnamomum , Fosfatidilinositol 3-Quinasas , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hojas de la Planta/metabolismoRESUMEN
Food-derived polysaccharides have advantages over synthetical compounds and have attracted interest globally for decades. In this study, we optimized the cellulase-assisted extraction of polysaccharides from white hyacinth bean (PWBs) with the aid of response surface methodology (RSM). The optimum extraction parameters were a pH of 7.79, a cellulase of 2.73%, and a ratio of water to material of 61.39, producing a high polysaccharide yield (3.32 ± 0.03)%. The scavenging ability of PWBs varied on three radicals (hydroxyl > 2,2-diphenyl-1-picrylhydrazyl (DPPH) > superoxide). Furthermore, PWBs contributed to the proliferation of three probiotic bacteria (Lactobacillus acidophilus LA5, Bifidobacterium bifidum BB01, and Lactobacillus bulgaricus LB6). These investigations of PWBs provide a novel bioresource for the exploitation of antioxidant and probiotic bacterial proliferation.
Asunto(s)
Celulasa/metabolismo , Hyacinthus/química , Polisacáridos/aislamiento & purificación , Bifidobacterium bifidum/efectos de los fármacos , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus delbrueckii/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Polisacáridos/farmacología , ProbióticosRESUMEN
Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide, with high incidence and low survival rates. Nicotinic acetylcholine receptors play an important role in the progression of LUAD. In this study, a screening of 17 nicotinic acetylcholine receptor allosteric agents revealed that spinosad effectively suppressed the proliferation of LUAD cells. The experiments demonstrated that spinosad induced cell cycle arrest in the G1 phase and stimulated apoptosis, thereby impeding the growth of LUAD and enhancing the responsiveness to gefitinib in vitro and vivo. Mechanistic insights obtained through transcriptome sequencing, Co-IP, and protein immunoblots indicated that spinosad disrupted the interaction between CHRNA5 and EGFR, thereby inhibiting the formation of downstream complexes and activation of the EGFR signaling pathway. The supplementation of exogenous acetylcholine showed to mitigate the inhibition of LUAD cell proliferation induced by spinosad. This study elucidates the therapeutic effects and mechanisms of spinosad in LUAD, and offers a theoretical and experimental foundation for novel LUAD treatments.
Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Proliferación Celular , Combinación de Medicamentos , Receptores ErbB , Neoplasias Pulmonares , Macrólidos , Receptores Nicotínicos , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Macrólidos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones Desnudos , Ratones , Ratones Endogámicos BALB C , Células A549RESUMEN
Lactobacillus acidophilus was encapsulated in xanthanâ»chitosan (XC) and xanthanâ»chitosanâ»xanthan (XCX) polyelectrolyte complex (PEC) gels by extrusion method. The obtained capsules were characterized by X-ray diffraction and FTIR spectroscopy. The effects of microencapsulation on the changes in survival and release behavior of the Lactobacillus acidophilus during exposure to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were studied. Encapsulated Lactobacillus acidophilus exhibited a significantly higher resistance to SGF and SIF than non-encapsulated samples. In addition, the viability of free and immobilized cells of Lactobacillus acidophilus incorporated into dairy beverages was assessed for 21 days both at room temperature and in refrigerated storage. The results indicated that xanthanâ»chitosanâ»xanthan (XCX) and xanthanâ»chitosan (XC) significantly (p < 0.05) improved the cell survival of Lactobacillus acidophilus in yogurt during 21 days of storage at 4 and 25 °C, when compared to free cells.
RESUMEN
Angiotensin I-converting enzyme (ACE) peptides are bioactive peptides that have important value in terms of research and application in the prevention and treatment of hypertension. While widespread literature is concentrated on casein or whey protein for production of ACE-inhibitory peptides, relatively little information is available on selecting the proper proteases to hydrolyze the protein. In this study, skimmed cow and goat milk were hydrolyzed by four commercial proteases, including alkaline protease, trypsin, bromelain, and papain. Angiotensin I-converting enzyme-inhibitory peptides and degree of hydrolysis (DH) of hydrolysates were measured. Moreover, we compared the difference in ACE-inhibitory activity between cow and goat milk. The results indicated that the DH increased with the increase in hydrolysis time. The alkaline protease-treated hydrolysates exhibited the highest DH value and ACE-inhibitory activity. Additionally, the ACE-inhibitory activity of hydrolysates from goat milk was higher than that of cow milk-derived hydrolysates. Therefore, goat milk is a good source to obtain bioactive peptides with ACE-inhibitory activity, as compared with cow milk. A proper enzyme to produce ACE-inhibitory peptides is important for the development of functional milk products and will provide the theoretical basis for industrial production.
Asunto(s)
Leche/química , Péptido Hidrolasas/química , Péptidos/química , Peptidil-Dipeptidasa A/química , Animales , Proteínas Bacterianas/química , Bovinos , Endopeptidasas/química , Femenino , Cabras , Hidrólisis , Hipertensión/dietoterapia , Hipertensión/patología , Leche/enzimología , Péptidos/genéticaRESUMEN
The more accurate biomarkers have long been desired for hepatocellular carcinoma (HCC). Here, we characterized global large-scale proteomics of multistep hepatocarcinogenesis in an attempt to identify novel biomarkers for HCC. Quantitative data of 37874 sequences and 3017 proteins during hepatocarcinogenesis were obtained in cohort 1 of 75 samples (5 pooled groups: normal livers, hepatitis livers, cirrhotic livers, peritumoral livers, and HCC tissues) by iTRAQ 2D LC-MS/MS. The diagnostic performance of the top six most upregulated proteins in HCC group and HSP70 as reference were subsequently validated in cohort 2 of 114 samples (hepatocarcinogenesis from normal livers to HCC) using immunohistochemistry. Of seven candidate protein markers, PARP1, GS and NDRG1 showed the optimal diagnostic performance for HCC. PARP1, as a novel marker, showed comparable diagnostic performance to that of classic markers GS and NDRG1 in HCC (AUCs = 0.872, 0.856 and 0.792, respectively). A significant higher AUC of 0.945 was achieved when three markers combined. For diagnosis of HCC, the sensitivity and specificity were 88.2% and 81.0% when at least two of the markers were positive. Similar diagnostic values of PARP1, GS and NDRG1 were confirmed by immunohistochemistry in cohort 3 of 180 HCC patients. Further analysis indicated that PARP1 and NDRG1 were associated with some clinicopathological features, and the independent prognostic factors for HCC patients. Overall, global large-scale proteomics on spectrum of multistep hepatocarcinogenesis are obtained. PARP1 is a novel promising diagnostic/prognostic marker for HCC, and the three-marker panel (PARP1, GS and NDRG1) with excellent diagnostic performance for HCC was established.