Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426819

RESUMEN

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

2.
Cardiovasc Diabetol ; 23(1): 86, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419039

RESUMEN

BACKGROUND: Studies on the relationship between insulin resistance (IR) surrogates and long-term all-cause mortality in patients with coronary heart disease (CHD) and hypertension are lacking. This study aimed to explore the relationship between different IR surrogates and all-cause mortality and identify valuable predictors of survival status in this population. METHODS: The data came from the National Health and Nutrition Examination Survey (NHANES 2001-2018) and National Death Index (NDI). Multivariate Cox regression and restricted cubic splines (RCS) were performed to evaluate the relationship between homeostatic model assessment of IR (HOMA-IR), triglyceride glucose index (TyG index), triglyceride glucose-body mass index (TyG-BMI index) and all-cause mortality. The recursive algorithm was conducted to calculate inflection points when segmenting effects were found. Then, segmented Kaplan-Meier analysis, LogRank tests, and multivariable Cox regression were carried out. Receiver operating characteristic (ROC) and calibration curves were drawn to evaluate the differentiation and accuracy of IR surrogates in predicting the all-cause mortality. Stratified analysis and interaction tests were conducted according to age, gender, diabetes, cancer, hypoglycemic and lipid-lowering drug use. RESULTS: 1126 participants were included in the study. During the median follow-up of 76 months, 455 participants died. RCS showed that HOMA-IR had a segmented effect on all-cause mortality. 3.59 was a statistically significant inflection point. When the HOMA-IR was less than 3.59, it was negatively associated with all-cause mortality [HR = 0.87,95%CI (0.78, 0.97)]. Conversely, when the HOMA-IR was greater than 3.59, it was positively associated with all-cause mortality [HR = 1.03,95%CI (1.00, 1.05)]. ROC and calibration curves indicated that HOMA-IR was a reliable predictor of survival status (area under curve = 0,812). No interactions between HOMA-IR and stratified variables were found. CONCLUSION: The relationship between HOMA-IR and all-cause mortality was U-shaped in patients with CHD and hypertension. HOMA-IR was a reliable predictor of all-cause mortality in this population.


Asunto(s)
Enfermedad Coronaria , Hipertensión , Resistencia a la Insulina , Humanos , Estudios Longitudinales , Encuestas Nutricionales , Glucemia , Estudios de Cohortes , Hipertensión/diagnóstico , Enfermedad Coronaria/diagnóstico , Triglicéridos , Glucosa , Biomarcadores
3.
J Immunol ; 209(6): 1189-1199, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002234

RESUMEN

The activation of memory T cells is a very rapid and concerted cellular response that requires coordination between cellular processes in different compartments and on different time scales. In this study, we use ribosome profiling and deep RNA sequencing to define the acute mRNA translation changes in CD8 memory T cells following initial activation events. We find that initial translation enables subsequent events of human and mouse T cell activation and expansion. Briefly, early events in the activation of Ag-experienced CD8 T cells are insensitive to transcriptional blockade with actinomycin D, and instead depend on the translation of pre-existing mRNAs and are blocked by cycloheximide. Ribosome profiling identifies ∼92 mRNAs that are recruited into ribosomes following CD8 T cell stimulation. These mRNAs typically have structured GC and pyrimidine-rich 5' untranslated regions and they encode key regulators of T cell activation and proliferation such as Notch1, Ifngr1, Il2rb, and serine metabolism enzymes Psat1 and Shmt2 (serine hydroxymethyltransferase 2), as well as translation factors eEF1a1 (eukaryotic elongation factor α1) and eEF2 (eukaryotic elongation factor 2). The increased production of receptors of IL-2 and IFN-γ precedes the activation of gene expression and augments cellular signals and T cell activation. Taken together, we identify an early RNA translation program that acts in a feed-forward manner to enable the rapid and dramatic process of CD8 memory T cell expansion and activation.


Asunto(s)
Glicina Hidroximetiltransferasa , Interleucina-2 , Regiones no Traducidas 5' , Animales , Linfocitos T CD8-positivos , Cicloheximida/metabolismo , Dactinomicina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Memoria Inmunológica , Interleucina-2/metabolismo , Activación de Linfocitos , Células T de Memoria , Ratones , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Pirimidinas/metabolismo , ARN Mensajero/genética , Serina/genética
4.
J Math Biol ; 88(2): 22, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294559

RESUMEN

We develop a multi-group and multi-patch model to study the effects of population dispersal on the spatial spread of vector-borne diseases across a heterogeneous environment. The movement of host and/or vector is described by Lagrangian approach in which the origin or identity of each individual stays unchanged regardless of movement. The basic reproduction number [Formula: see text] of the model is defined and the strong connectivity of the host-vector network is succinctly characterized by the residence times matrices of hosts and vectors. Furthermore, the definition and criterion of the strong connectivity of general infectious disease networks are given and applied to establish the global stability of the disease-free equilibrium. The global dynamics of the model system are shown to be entirely determined by its basic reproduction number. We then obtain several biologically meaningful upper and lower bounds on the basic reproduction number which are independent or dependent of the residence times matrices. In particular, the heterogeneous mixing of hosts and vectors in a homogeneous environment always increases the basic reproduction number. There is a substantial difference on the upper bound of [Formula: see text] between Lagrangian and Eulerian modeling approaches. When only host movement between two patches is concerned, the subdivision of hosts (more host groups) can lead to a larger basic reproduction number. In addition, we numerically investigate the dependence of the basic reproduction number and the total number of infected hosts on the residence times matrix of hosts, and compare the impact of different vector control strategies on disease transmission.


Asunto(s)
Enfermedades Transmitidas por Vectores , Humanos , Enfermedades Transmitidas por Vectores/epidemiología , Número Básico de Reproducción , Movimiento
5.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475056

RESUMEN

In this paper, an improved APF-GFARRT* (artificial potential field-guided fuzzy adaptive rapidly exploring random trees) algorithm based on APF (artificial potential field) guided sampling and fuzzy adaptive expansion is proposed to solve the problems of weak orientation and low search success rate when randomly expanding nodes using the RRT (rapidly exploring random trees) algorithm for disinfecting robots in the dense environment of disinfection operation. Considering the inherent randomness of tree growth in the RRT* algorithm, a combination of APF with RRT* is introduced to enhance the purposefulness of the sampling process. In addition, in the context of RRT* facing dense and restricted environments such as narrow passages, adaptive step-size adjustment is implemented using fuzzy control. It accelerates the algorithm's convergence and improves search efficiency in a specific area. The proposed algorithm is validated and analyzed in a specialized environment designed in MATLAB, and comparisons are made with existing path planning algorithms, including RRT, RRT*, and APF-RRT*. Experimental results show the excellent exploration speed of the improved algorithm, reducing the average initial path search time by about 46.52% compared to the other three algorithms. In addition, the improved algorithm exhibits faster convergence, significantly reducing the average iteration count and the average final path cost by about 10.01%. The algorithm's enhanced adaptability in unique environments is particularly noteworthy, increasing the chances of successfully finding paths and generating more rational and smoother paths than other algorithms. Experimental results validate the proposed algorithm as a practical and feasible solution for similar problems.

6.
Nano Lett ; 23(9): 3826-3834, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115709

RESUMEN

Modifying the atomic and electronic structure of platinum-based alloy to enhance its activity and anti-CO poisoning ability is a vital issue in hydrogen oxidation reaction (HOR). However, the role of foreign modifier metal and the underlying ligand effect is not fully understood. Here, we propose that the ligand effect of single-atom Cu can dynamically modulate the d-band center of Pt-based alloy for boosting HOR performance. By in situ X-ray absorption spectroscopy, our research has identified that the potential-driven structural rearrangement into high-coordination Cu-Pt/Pd intensifies the ligand effect in Pt-Cu-Pd, leading to enhanced HOR performance. Thereby, modulating the d-band structure leads to near-optimal hydrogen/hydroxyl binding energies and reduced CO adsorption energies for promoting the HOR kinetics and the CO-tolerant capability. Accordingly, PtPdCu1/C exhibits excellent CO tolerance even at 1,000 ppm impurity.

7.
J Antimicrob Chemother ; 78(8): 1859-1870, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37288948

RESUMEN

BACKGROUND: CpxR is a critical regulator in bacterial adaptation to various harmful stresses, and is known to regulate bacterial resistance to commonly used antibiotics, such as aminoglycosides, ß-lactams and polypeptides. However, the detailed study of functional residues of CpxR remains insufficient. OBJECTIVES: To investigate the contribution of Lys219 to CpxR's function in regulating antibiotic resistance of Escherichia coli. METHODS: We performed sequence alignment and conservative analysis of the CpxR protein and constructed mutant strains. We then performed electrophoretic mobility shift assay, real-time quantitative PCR assay, determination of reactive oxygen species (ROS) levels, molecular dynamics simulation, conformational analysis and circular dichroism. RESULTS: All mutant proteins (K219Q, K219A and K219R) lost the cpxP DNA-binding ability. Additionally, the three complemented strains eK219A, eK219Q, and eK219R exhibited lower resistance to copper toxicity and alkaline pH toxicity than eWT. Molecular dynamics analysis revealed that mutation of Lys219 leads to looser and more unstable conformation of CpxR, leading to its decreased binding affinity with downstream genes. Moreover, the Lys219 mutation resulted in the down-regulation of efflux pump genes (acrD, tolC, mdtB and mdtA), leading to the accumulation of antibiotics inside the cells and an increase in ROS production, which significantly reduces antibiotic resistance. CONCLUSIONS: The mutation of the key residue Lys219 causes a conformational change that results in the loss of regulatory ability of CpxR, which may potentially reduce to antibiotic resistance. Therefore, this study suggests that targeting the highly conserved sequence of CpxR could be a promising strategy for the development of new antibacterial drugs.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Regulación Bacteriana de la Expresión Génica
8.
Acc Chem Res ; 55(18): 2594-2603, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044043

RESUMEN

Catalysts can effectively accelerate the reaction kinetics process and are recognized as the core to realize the conversion and supply of carbon-free energy. However, the active sites of catalysts, especially nanocatalysts, usually undergo dynamic structural evolution under realistic working conditions, which may be induced by various reaction effects such as the applied voltages, electrolytes, or adsorbed intermediates. Therefore, in-depth and systemic insights into the nature of the active sites involved under the working conditions are prerequisites for correlating structure-performance relationships. However, uncovering and identifying active sites under operation conditions are still formidable scientific and technical challenges, which are severely hindered by the complex physical and chemical processes occurring on the active sites. Meanwhile, complementary and important information could be missed by conducting only the conventionally employed ex situ microscopic and spectroscopic measurements. Accordingly, it is highly desirable for us to develop the ever-increasing in situ synchrotron-based techniques to identify the nature of active sites, which renders the rational design of functional catalysts achievable.In this Account, we elaborately highlight the substantial achievements in cutting-edge in situ X-ray spectroscopy (XAS) techniques by presenting several representative carbon-neutral electrocatalytic examples performed in our group to broadcast the principles and virtues of identifying the active sites and tracing intermediate species during electrocatalytic water splitting and electrocatalytic CO2 reduction (ECR). Specifically, we believe that the interactions between the active sites and the support as well as the adsorption behaviors of intermediates are considered to be the important factors that govern the performance in the water splitting reaction. Meanwhile, the structural rearrangement of alloy catalysts driven by the cathodic potential significantly governs the activity and selectivity toward ECR. More importantly, the directions and suggestions for addressing the current limitations and pitfalls that we may encounter in the course of executing in situ experiments are also provided. Accordingly, it is necessary to use multiple in situ synchrotron-based techniques to obtain the comprehensive details. Furthermore, bridging the gap between the real energy devices and half-reactions could help us to approach the realistic mechanism. Beyond that, developing the rapid time resolution of in situ XAS will overcome the challenge of timescale mismatch to capture the faster structural kinetics of catalysts. Therefore, this Account is aimed to increase the awareness and appreciation of conducting in situ investigations on energy conversion reactions, which would be a guideline for us to explore catalytic scopes that remain challenging.


Asunto(s)
Dióxido de Carbono , Sincrotrones , Aleaciones , Dominio Catalítico , Análisis Espectral/métodos , Agua/química
9.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601208

RESUMEN

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Asunto(s)
Receptores Notch/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Drosophila , Resistencia a Antineoplásicos/efectos de los fármacos , Células HeLa , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/química , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Ratones , Mutación , Fenotipo , Multimerización de Proteína , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
10.
J Am Pharm Assoc (2003) ; 63(5): 1583-1591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37414280

RESUMEN

BACKGROUND: The growing population demand and the epidemic lead of coronavirus disease 2019 have highlighted the critical importance of patient access to compounded formulations, including for special purposes such as pediatrics, geriatrics, and other uses. However, there are many potential risks, including quality issues and 503A facilities have not received valid prescriptions for individually-identified patients for a portion of the drug products they produce. OBJECTIVE: The aim is to analyze the (503A facilities) warning letters and identify the problem of compounding medicines not meeting the United States Pharmacopoeia specifications. METHODS: Content analysis and descriptive statistics methods were used to analyze the violations of compounding warning letters from 2017 to 2021. The content of warning letter violations was analyzed in terms of both the compounding environment and 503A facilities that did not received valid prescriptions for individually-identified patients for a portion of the drug products they produced. RESULTS: A total of 113 compounding warning letters (503A facilities, N = 112) from 2017 to 2021 were analyzed in this study. The percentage of 503A facilities involved in sterile compounding environmental issues was 79.46%, with facility design and environmental controls (73/89, 82.02%), cleaning and disinfecting the compounding area (59/89, 66.29%), and personnel cleansing and garbing (44/89, 49.44%) being the top 3 issues. Seventy-two (72/112, 64.29%) 503A facilities that did not received valid prescriptions for individually-identified patients for a portion of the drug products they produced. Fifty-one (51/72, 70.83%) of these warning letters were related to sterile environment issues, and 28 warning letters identified specific drugs that did not qualify for Section 503A exemptions. CONCLUSION: The warning letter of compounding drugs issued by Food and Drug Administration can be used as a learning tool for compounders. Compounders can learn from the experience and lessons, improve compounding operations and reduce mistakes.

11.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571687

RESUMEN

The vibration signals from rotating machinery are constantly mixed with other noises during the acquisition process, which has a negative impact on the accuracy of signal feature extraction. For vibration signals from rotating machinery, the conventional linear filtering-based denoising method is ineffective. To address this issue, this paper suggests an enhanced signal denoising method based on maximum overlap discrete wavelet packet transform (MODWPT) and variational mode decomposition (VMD). VMD decomposes the vibration signal of rotating machinery to produce a set of intrinsic mode functions (IMFs). By computing the composite weighted entropy (CWE), the phantom IMF component is then removed. In the end, the sensitive component is obtained by computing the value of the degree of difference (DID) after the high-frequency noise component has been decomposed through MODWPT. The denoised signal reconstructs the signal's intrinsic characteristics as well as the denoised high-frequency IMF component. This technique was used to analyze the simulated and real-world signals of gear faults and it was compared to wavelet threshold denoising (WTD), empirical mode decomposition reconstruction denoising (EMD-RD), and ensemble empirical mode decomposition wavelet threshold denoising (EEMD-WTD). The outcomes demonstrate that this method can accurately extract the signal feature information while filtering out the noise components in the signal.

12.
J Clin Nurs ; 32(13-14): 3248-3265, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35791260

RESUMEN

AIMS AND OBJECTIVES: To evaluate and quantify the best available evidence regarding risk factors for severe perineal lacerations. BACKGROUND: Many studies have evaluated the risk factors for severe perineal lacerations. However, the results of those studies are inconsistent, and meta-analysis which thoroughly evaluates the risk factors for severe perineal lacerations is still lacking. DESIGN: Systematic review and meta-analysis of cohort studies based on the PRISMA guideline. METHODS: PubMed, Embase, the Cochrane Library, CINAHL, ClinicalTrials.gov, CNKI, Wanfang Data, VIP and SinoMed were systematically searched for cohort studies reporting at least one risk factor for severe perineal lacerations from 1 January 2000 to 2 June 2021. Two reviewers independently conducted quality appraisal by NOS scale and extracted data. Data synthesis was conducted via RevMan 5.3 using a random-effects or fixed-effects model. RESULTS: A total of 47 studies with 7,043,218 women were included. The results showed that prior caesarean delivery (OR: 1.46, 95% CI 1.12-1.92) and pre-pregnant underweight (OR: 1.31, 95% CI 1.22-1.41) significantly increased the risk of severe perineal lacerations. The results also demonstrated that episiotomy was protective against severe perineal lacerations in forceps delivery (OR: 0.56, 95% CI 0.42-0.74), but not spontaneous vaginal delivery (OR: 1.30, 95% CI 0.81-2.07) or vacuum delivery (OR: 0.76, 95% CI 0.45-1.28). Nulliparity, foetus in occipitoposterior or occipitotransverse position, and midline episiotomy were also independent risk factors for severe perineal lacerations. CONCLUSIONS: Severe perineal lacerations are associated with many factors, and evidence-based risk assessment tools are needed to guide the midwives and obstetricians to estimate women's risk of severe perineal lacerations. RELEVANCE TO CLINICAL PRACTICE: This systematic review and meta-analysis identified some important risk factors for severe perineal lacerations, which provides comprehensive insights to guide the midwives to assess women's risk for severe perineal lacerations and take appropriate preventive measures to decrease the risk.


Asunto(s)
Laceraciones , Complicaciones del Trabajo de Parto , Embarazo , Femenino , Humanos , Laceraciones/epidemiología , Laceraciones/etiología , Perineo/lesiones , Complicaciones del Trabajo de Parto/epidemiología , Complicaciones del Trabajo de Parto/etiología , Parto Obstétrico/efectos adversos , Parto , Episiotomía/efectos adversos , Estudios de Cohortes , Factores de Riesgo
13.
Angew Chem Int Ed Engl ; 62(13): e202217719, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36692894

RESUMEN

The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1 -N4 ) transforms to O*-(Se1 -C2 ) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm-2 in Zn-air battery.

14.
Ecotoxicol Environ Saf ; 241: 113760, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709672

RESUMEN

Particulate Matter 2.5 (PM2.5) disrupts endocrine functions and may negatively affect sperm quality and quantity in males; however, the long-term effects and potential mechanisms of this effect are unknown. This study aimed to investigate the epigenetic mechanism of maternal exposure to PM2.5-induced inhibin B hypermethylation in male offspring. In this experiment design, pregnant C57BL/6 mice were treated with two doses of PM2.5 (4.8 and 43.2 mg/kg bw). The membrane control group was given a sampling membrane and the control group received nothing. Following the formation of the vaginal plug, intratracheal instillation of PM2.5 was administered every three days until delivery of the pups. To assess the effect of PM2.5 in vitro, TM4 cells, a Sertoli-like cell line, was treated with different concentrations (0, 25, 50, 100 µg/mL) of PM2.5 for 24 h. The results displayed that Sperm motility, as well as the number of adult offspring, was decreased in the PM2.5 exposed group relative to the untreated controls. Increased vacuolization was observed in the Sertoli cells of mice that were exposed to PM2.5 in utero. The levels of inhibin and testosterone were reduced and the levels of LH and FSH increased in the PM2.5 groups relative to the untreated controls. In vitro, PM2.5 resulted in cell cycle inhibition as well as increased apoptosis in TM4 cells. Moreover, PM2.5-induced inhibin B hypermethylation and activation of the p21/Cleaved Caspase-3 pathway resulted in TM4 cell apoptosis that was rescued through the use of a DNA methylation inhibitor. Together, our data suggest that prenatal exposure to PM2.5 results in inhibin B hypermethylation and can activate the p21/Cleaved Caspase-3 pathway, resulting in Sertoli cell apoptosis, aberrant secretion of androgen binding protein, and decreased testosterone, thus resulting in the inhibition of spermatogenesis.


Asunto(s)
Hormona Folículo Estimulante , Células de Sertoli , Animales , Apoptosis , Caspasa 3/metabolismo , Metilación de ADN , Femenino , Hormona Folículo Estimulante/metabolismo , Humanos , Inhibinas/genética , Inhibinas/metabolismo , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Material Particulado/metabolismo , Embarazo , Semen , Células de Sertoli/metabolismo , Motilidad Espermática , Espermatogénesis , Testosterona/metabolismo
15.
Nano Lett ; 21(1): 686-692, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33305576

RESUMEN

The electrocatalytic carbon dioxide reduction reaction (CO2RR) offers an attractive route to fuels and feedstocks from renewable energy. Gold is active for the electrochemical CO2RR to CO, while the competing hydrogen evolution reaction is unavoidable. Here, we report a synergistic strategy, via introducing atomically dispersed Fe to tune the electronic structure of the Au nanoparticle, to improve the CO selectivity. By using operando X-ray absorption and infrared spectroscopies, we reveal the dynamic structural evolution and the adsorption of reactant intermediates at the single-atom Fe1/Au interface. During the reaction, the interaction between Fe and Au atoms becomes stronger, and the Fe1/Au synergies affect the adsorption of reaction intermediates, thus improving the selectivity of CO up to 96.3% with a mass activity of 399 mA mg-1. These results highlight the significant importance of synergistic modulation for advancing the single-atom decorated nanoparticle catalysis.

16.
J Environ Manage ; 313: 114936, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390655

RESUMEN

The impact of perfluorooctanoic acid (PFOA) on the anaerobic granular sludge was evaluated through a sequential batch experiment. Results showed that PFOA inhibited the chemical oxygen demand (COD) removal rate of the sludge and the dosage of 100 mg/L PFOA was more obvious. However, this negative effect would gradually weaken with the adaptation of microorganisms. For the 50 mg/L PFOA experimental group, the proteins content in the extracellular polymeric substances (EPS) of the anaerobic granular sludge increased from 1.53 mg/g to 3.65 mg/g. Meanwhile, PFOA inhibited the 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) activity of the anaerobic granular sludge. Furthermore, 100 mg/L PFOA reduced the relative abundance of Proteobacteria by 5.99% and Longilinea by 1.11%. 100 mg/L PFOA mainly restricted COD removal by affecting the glycolysis process, with the abundances of glucokinase and pyruvate kinase reduced by 8% and 28.1%, respectively. Compared with the control group, the relative abundance of the methyl-coenzyme M reductase alpha subunit increased by 84%, respectively, under 100 mg/L PFOA.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Caprilatos , Fluorocarburos , Eliminación de Residuos Líquidos
17.
J Nurs Manag ; 30(2): 535-558, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34894017

RESUMEN

AIM: This review aims to demonstrate the current core competencies of the Chinese midwifery workforce and to summarize the influencing factors of core competencies. BACKGROUND: Midwifery core competencies are crucial to providing high-quality maternal and newborn health care, but little is known about the overall status of the core competencies of the Chinese midwifery workforce. EVALUATION: A scoping review was conducted following the latest Joanna Briggs Institute (JBI) scoping review methodology and Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. KEY ISSUES: Forty-one studies were included in this review. Regarding core competency assessment tools, the Midwife Core Competency Scale was used most frequently among 16 identified tools. Generally, the core competencies of the Chinese midwifery workforce were at a moderate or high level, but the competencies in pre-pregnancy, public health care and integrative competence were relatively inadequate. The main factors influencing the core competencies of the midwifery workforce were their working years, educational level and training experience. CONCLUSION: This review provides a comprehensive overview of the core competencies of the Chinese midwifery workforce at the national level. Future studies are encouraged to use objective instruments to reflect core competencies and explore the intervenable influencing factors of core competencies. IMPLICATIONS FOR NURSING MANAGEMENT: Core competency assessment tools can be used to select the qualified midwifery workforce. Targeted core competency enhancement programmes should be formulated based on the current core competencies level and the factors influencing core competencies.


Asunto(s)
Partería , Enfermeras Obstetrices , China , Femenino , Personal de Salud , Humanos , Recién Nacido , Partería/educación , Enfermeras Obstetrices/educación , Embarazo , Recursos Humanos
18.
J Am Chem Soc ; 143(30): 11317-11324, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34293258

RESUMEN

The development of atomically precise dinuclear heterogeneous catalysts is promising to achieve efficient catalytic performance and is also helpful to the atomic-level understanding on the synergy mechanism under reaction conditions. Here, we report a Ni2(dppm)2Cl3 dinuclear-cluster-derived strategy to a uniform atomically precise Ni2 site, consisting of two Ni1-N4 moieties shared with two nitrogen atoms, anchored on a N-doped carbon. By using operando synchrotron X-ray absorption spectroscopy, we identify the dynamically catalytic dinuclear Ni2 structure under electrochemical CO2 reduction reaction, revealing an oxygen-bridge adsorption on the Ni2-N6 site to form an O-Ni2-N6 structure with enhanced Ni-Ni interaction. Theoretical simulations demonstrate that the key O-Ni2-N6 structure can significantly lower the energy barrier for CO2 activation. As a result, the dinuclear Ni2 catalyst exhibits >94% Faradaic efficiency for efficient carbon monoxide production. This work provides bottom-up target synthesis approaches and evidences the identity of dinuclear sites active toward catalytic reactions.

19.
Nano Lett ; 20(11): 8319-8325, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33090809

RESUMEN

The atomic-level understanding of the dynamic evolution of the surface structure of bimetallic nanoparticles under industrially relevant operando conditions provides a key guide for improving their catalytic performance. Here, we exploit operando X-ray absorption fine structure spectroscopy to determine the dynamic surface reconstruction of Cu/Au bimetallic alloy where single-atom Cu was embedded on the Au nanoparticle, under electrocatalytic conditions. We identify the migration of isolated Cu atoms from the vertex position of the Au nanoparticle to the stable (100) plane of the Au first atom layer, when the reduction potential is applied. Density functional theory calculations reveal that the surface atom migration would significantly modulate the Au electronic structure, thus serving as the real active site for the catalytic performance. These findings demonstrate the real structural change under electrochemical conditions and provide guidance for the rational design of high-activity bimetallic nanocatalysts.

20.
Biochem Biophys Res Commun ; 530(1): 307-313, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828304

RESUMEN

Bacterial resistance has become a serious threat to human health. In particular, the gradual development of resistance to polymyxins, the last line of defense for human infections, is a major issue. Secreted proteins contribute to the interactions between bacteria and the environment. In this study, we compared the secretomes of polymyxin B-sensitive and -resistant Escherichia coli strains by data-independent acquisition mass spectrometry. In total, 87 differentially expressed secreted proteins were identified in polymyxin B-resistant E. coli compared to the sensitive strain. A GO enrichment analysis indicated that the differentially expressed proteins were involved in biological processes, including bacterial-type flagellum-dependent cell motility, ion transport, carbohydrate derivative biosynthetic process, cellular response to stimulus, organelle organization, and cell wall organization or biogenesis. The differentially expressed secreted proteins in polymyxin B-resistant bacteria were enriched for multiple pathways, suggesting that the resistance phenotype depends on complex regulatory mechanisms. A potential biomarker or drug target (YebV) was found in polymyxin B-resistant E. coli. This work clarifies the secretome changes associated with the acquisition of polymyxin resistance and may contribute to drug development.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Polimixina B/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/análisis , Humanos , Pruebas de Sensibilidad Microbiana , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA