Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.474
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 618(7966): 740-747, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344650

RESUMEN

Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1-8. Muscle achieves its toughness through finely controlled forced domain unfolding-refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9-11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels without compromising their toughness. By introducing chain entanglements13 into the hydrogel network made of folded elastomeric proteins, we are able to engineer highly stiff and tough protein hydrogels, which seamlessly combine mutually incompatible mechanical properties, including high stiffness, high toughness, fast recovery and ultrahigh compressive strength, effectively converting soft protein biomaterials into stiff and tough materials exhibiting mechanical properties close to those of cartilage. Our study provides a general route towards engineering protein-based, stiff and tough biomaterials, which will find applications in biomedical engineering, such as osteochondral defect repair, and material sciences and engineering.


Asunto(s)
Materiales Biocompatibles , Cartílago , Hidrogeles , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Cartílago/química , Colágeno/química , Conectina/química , Hidrogeles/síntesis química , Hidrogeles/química , Proteoglicanos/química , Ingeniería de Tejidos/métodos , Humanos
2.
Nat Immunol ; 16(9): 991-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214740

RESUMEN

Induction of the transcriptional repressor Bcl-6 in CD4(+) T cells is critical for the differentiation of follicular helper T cells (T(FH) cells), which are essential for B cell-mediated immunity. In contrast, the transcription factor Blimp1 (encoded by Prdm1) inhibits T(FH) differentiation by antagonizing Bcl-6. Here we found that the transcription factor TCF-1 was essential for both the initiation of T(FH) differentiation and the effector function of differentiated T(FH) cells during acute viral infection. Mechanistically, TCF-1 bound directly to the Bcl6 promoter and Prdm1 5' regulatory regions, which promoted Bcl-6 expression but repressed Blimp1 expression. TCF-1-null T(FH) cells upregulated genes associated with non-T(FH) cell lineages. Thus, TCF-1 functions as an important hub upstream of the Bcl-6-Blimp1 axis to initiate and secure the differentiation of T(FH) cells during acute viral infection.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas de Unión al ADN/inmunología , Factor Nuclear 1-alfa del Hepatocito/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Transcripción/inmunología , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Centro Germinal/inmunología , Centro Germinal/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Virus de la Influenza A , Ratones , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Proto-Oncogénicas c-bcl-6 , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954541

RESUMEN

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Asunto(s)
Matriz Extracelular , Hidrogeles , Células Madre Mesenquimatosas , Esferoides Celulares , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Hidrogeles/química , Matriz Extracelular/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Humanos , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Porosidad , Mecanotransducción Celular/fisiología , Células Cultivadas
4.
Hum Mol Genet ; 33(13): 1186-1193, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38538564

RESUMEN

Melanoma, renowned for its aggressive behavior and resistance to conventional treatments, stands as a formidable challenge in the oncology landscape. The dynamic and complex interplay between cancer cells and the tumor microenvironment has gained significant attention, revealing Melanoma-Associated Fibroblasts (MAFs) as central players in disease progression. The heterogeneity of MAFs endows them with a dual role in melanoma. This exhaustive review seeks to not only shed light on the multifaceted roles of MAFs in orchestrating tumor-promoting inflammation but also to explore their involvement in antitumor immunity. By unraveling novel mechanisms underlying MAF functions, this review aims to provide a comprehensive understanding of their impact on melanoma development. Additionally, it delves into the potential of leveraging MAFs for innovative immunotherapeutic strategies, offering new avenues for enhancing treatment outcomes in the challenging realm of melanoma therapeutics.


Asunto(s)
Fibroblastos Asociados al Cáncer , Inmunoterapia , Melanoma , Microambiente Tumoral , Humanos , Melanoma/inmunología , Melanoma/terapia , Melanoma/patología , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/metabolismo , Animales , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Inflamación/inmunología , Fibroblastos/inmunología , Fibroblastos/metabolismo
5.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700398

RESUMEN

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Asunto(s)
Inflamación , Presión Osmótica , Células Th17 , Tilapia , Animales , Células Th17/inmunología , Inflamación/inmunología , Tilapia/inmunología , Transducción de Señal/inmunología , Activación de Linfocitos/inmunología , Interleucina-17/metabolismo , Interleucina-17/inmunología
6.
J Immunol ; 212(7): 1113-1128, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363204

RESUMEN

As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.


Asunto(s)
Cíclidos , Linfocitos T , Animales , Antígeno CTLA-4 , Antígenos CD28 , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Activación de Linfocitos , Glucólisis , Mamíferos
7.
Nucleic Acids Res ; 52(D1): D1597-D1613, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37831097

RESUMEN

The scope and function of RNA modifications in model plant systems have been extensively studied, resulting in the identification of an increasing number of novel RNA modifications in recent years. Researchers have gradually revealed that RNA modifications, especially N6-methyladenosine (m6A), which is one of the most abundant and commonly studied RNA modifications in plants, have important roles in physiological and pathological processes. These modifications alter the structure of RNA, which affects its molecular complementarity and binding to specific proteins, thereby resulting in various of physiological effects. The increasing interest in plant RNA modifications has necessitated research into RNA modifications and associated datasets. However, there is a lack of a convenient and integrated database with comprehensive annotations and intuitive visualization of plant RNA modifications. Here, we developed the Plant RNA Modification Database (PRMD; http://bioinformatics.sc.cn/PRMD and http://rnainformatics.org.cn/PRMD) to facilitate RNA modification research. This database contains information regarding 20 plant species and provides an intuitive interface for displaying information. Moreover, PRMD offers multiple tools, including RMlevelDiff, RMplantVar, RNAmodNet and Blast (for functional analyses), and mRNAbrowse, RNAlollipop, JBrowse and Integrative Genomics Viewer (for displaying data). Furthermore, PRMD is freely available, making it useful for the rapid development and promotion of research on plant RNA modifications.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Plantas , ARN de Planta , Manejo de Datos , Genómica , Plantas/genética , ARN de Planta/genética
8.
Nano Lett ; 24(11): 3413-3420, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456746

RESUMEN

Two-dimensional (2D) NbOI2 demonstrates significant second-harmonic generation (SHG) with a high conversion efficiency. To unlock its full potential in practical applications, it is desirable to modulate the SHG behavior while utilizing the intrinsic lattice anisotropy. Here, we demonstrate direction-specific modulation of the SHG response in NbOI2 by applying anisotropic strain with respect to the intrinsic lattice orientations, where more than 2-fold enhancement in the SHG intensity is achieved under strain along the polar axis. The strain-driven SHG evolution is attributed to the strengthened built-in piezoelectric field (polar axis) and the enlarged Peierls distortions (nonpolar axis). Moreover, we provide quantifications of the correlation between strain and SHG intensity in terms of the susceptibility tensor. Our results demonstrate the effective coupling of orientation-specific strain to the anisotropic SHG response through the intrinsic polar order in 2D nonlinear optical crystals, opening a new paradigm toward the development of functional devices.

9.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38408353

RESUMEN

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium berghei , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/genética , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Malaria Vivax/transmisión , Malaria Vivax/prevención & control , Malaria Vivax/parasitología , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Ratones , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Humanos , Femenino , Antígenos de Superficie
10.
Infect Immun ; 92(3): e0037423, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289124

RESUMEN

Gamete surface protein P48/45 has been shown to be important for male gamete fertility and a strong candidate for the development of a malaria transmission-blocking vaccine (TBV). However, TBV development for Plasmodium vivax homolog Pvs48/45 has been slow because of a number of challenges: availability of conformationally suitable recombinant protein; the lack of an in vivo challenge model; and the inability to produce P. vivax gametocytes in culture to test transmission-blocking activity of antibodies. To support ongoing efforts to develop Pvs48/45 as a potential vaccine candidate, we initiated efforts to develop much needed reagents to move the field forward. We generated monoclonal antibodies (mAbs) directed against Pvs48/45 and characterized putative functional domains in Pvs48/45 using recombinant fragments corresponding to domains D1-D3 and their biological functionality through ex vivo direct membrane feeding assays (DMFAs) using P. vivax parasites from patients in a field setting in Brazil. While some mAbs partially blocked oocyst development in the DMFA, one mAb caused a significant enhancement of the infectivity of gametocytes in the mosquitoes. Individual mAbs exhibiting blocking and enhancing activities recognized non-overlapping epitopes in Pvs48/45. Further characterization of precise epitopes recognized by transmission-reducing and -enhancing antibodies will be crucial to design an effective immunogen with optimum transmission-reducing potential.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Animales , Humanos , Masculino , Plasmodium vivax , Anticuerpos Monoclonales , Proteínas de la Membrana , Antígenos de Protozoos/genética , Epítopos , Células Germinativas , Anticuerpos Antiprotozoarios
11.
Neurobiol Dis ; 193: 106442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382884

RESUMEN

Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, ß-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Reproducibilidad de los Resultados , Enfermedad de Parkinson/metabolismo , Enfermedad de Huntington/diagnóstico , Biomarcadores
12.
Anal Chem ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490972

RESUMEN

Core-shell nanostructures are a typical material design. Usually, it consists of a core wrapped in a shell. It has attracted much attention due to its tunable structure and composition, high surface area, and high programmability. The properties and resonance frequency of their surface plasmons can be adjusted by regulating the shape, size, and composition of metal core-shell nanostructures. This interaction makes core-shell nanostructures an excellent platform for plasmon-enhanced optical effects. This Perspective explores the categories of core-shell nanostructures, their exchanges with excitons in two-dimensional materials, their spectrum-enhanced aspects, and prospects for future applications of core-shell nanostructures.

13.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36027578

RESUMEN

Anatomical Therapeutic Chemical (ATC) classification for compounds/drugs plays an important role in drug development and basic research. However, previous methods depend on interactions extracted from STITCH dataset which may make it depend on lab experiments. We present a pilot study to explore the possibility of conducting the ATC prediction solely based on the molecular structures. The motivation is to eliminate the reliance on the costly lab experiments so that the characteristics of a drug can be pre-assessed for better decision-making and effort-saving before the actual development. To this end, we construct a new benchmark consisting of 4545 compounds which is with larger scale than the one used in previous study. A light-weight prediction model is proposed. The model is with better explainability in the sense that it is consists of a straightforward tokenization that extracts and embeds statistically and physicochemically meaningful tokens, and a deep network backed by a set of pyramid kernels to capture multi-resolution chemical structural characteristics. Its efficacy has been validated in the experiments where it outperforms the state-of-the-art methods by 15.53% in accuracy and by 69.66% in terms of efficiency. We make the benchmark dataset, source code and web server open to ease the reproduction of this study.


Asunto(s)
Benchmarking , Programas Informáticos , Proyectos Piloto
14.
Chemphyschem ; : e202300880, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705870

RESUMEN

Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.

15.
Fish Shellfish Immunol ; 151: 109747, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969154

RESUMEN

The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.

16.
Fish Shellfish Immunol ; 148: 109515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499218

RESUMEN

As a multipotent cytokine, interleukin (IL)-2 plays important roles in activation, differentiation and survival of the lymphocytes. Although biological characteristics and function of IL-2 have been clarified in several teleost species, evidence regarding IL-2 production at the cellular and protein levels is still scarce in fish due to the lack of reliable antibody. In this study, we developed a mouse anti-Nile tilapia IL-2 monoclonal antibody (mAb), which could specifically recognize IL-2 protein and identify IL-2-producing lymphocytes of tilapia. Using this mAb, we found that CD3+ T cells, but not CD3- lymphocytes, are the main cellular source of IL-2 in tilapia. Under resting condition, both CD3+CD4-1+ T cells and CD3+CD4-1- T cells of tilapia produce IL-2. Moreover, the IL-2 protein level and the frequency of IL-2+ T cells significantly increased once T cells were activated by phytohemagglutinin (PHA) or CD3 plus CD28 mAbs in vitro. In addition, Edwardsiella piscicida infection also induces the IL-2 production and the expansion of IL-2+ T cells in the spleen lymphocytes. These findings demonstrate that IL-2 takes part in the T-cell activation and anti-bacterial adaptive immune response of tilapia, and can serve as an important marker for T-cell activation of teleost fish. Our study has enriched the knowledge regarding T-cell response in fish species, and also provide novel perspective for understanding the evolution of adaptive immune system.


Asunto(s)
Antígenos CD28 , Interleucina-2 , Animales , Anticuerpos Monoclonales , Complejo CD3 , Interleucina-2/genética , Activación de Linfocitos , Linfocitos T , Tilapia
17.
Phys Chem Chem Phys ; 26(22): 16200-16206, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804194

RESUMEN

Considering that the crystallographic characteristics of the Sb-rich secondary phase particles (SPPs) greatly affect the thermoelectric properties of Bi2Te3 based materials, it is of great significance to explore the mechanism behind the Sb-rich SPPs in the p-type (Bi, Sb)2Te3 material. Here a conventional TEM technique was used to characterize the composition, size and distribution of Sb-rich SPPs in a spark plasma sintered p-type (Bi, Sb)2Te3 alloy. The results indicated that two different morphologies of Sb-rich SPPs including elongated and circular Sb-rich SPPs were frequently observed. Combined with high-resolution transmission electron microscopy, this work provides atomic-scale evidence for the formation mechanism behind the Sb-rich SPPs in the (Bi, Sb)2Te3 material.

18.
Environ Res ; 244: 117930, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103771

RESUMEN

Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.


Asunto(s)
Hypocreales , Metales Pesados , Tylenchoidea , Humanos , Animales , Cadmio/análisis , Tylenchoidea/metabolismo , Tylenchoidea/microbiología , Metales Pesados/análisis , Hypocreales/metabolismo , Suelo
19.
Appl Microbiol Biotechnol ; 108(1): 82, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189955

RESUMEN

Dunaliella salina is a high-quality industrial effector for carotenoid production. The mechanism by which red light regulates carotenoid synthesis is still unclear. In this study, a transcription factor of DsGATA1 with a distinct structure was discovered in D. salina. The recognition motif of DsGATA1 was comparable to that of plant and fungal GATA, despite its evolutionary proximity to animal-derived GATA. The expression of DsGATA1 in D. salina was still noticeably decreased when exposed to red light. Analysis of physiological and biochemical transcriptomic data from overexpressed, interfering, and wild-type strains of DsGATA1 revealed that DsGATA1 acts as a global regulator of D. salina carotenoid synthesis. The upregulated genes in the CBP pathway by DsGATA1 were involved in its regulation of the synthesis of carotenoids. DsGATA1 also enhanced carotenoid accumulation under red light by affecting N metabolism. DsGATA1 was found to directly bind to the promoter of nitrate reductase to activate its expression, promoting D. salina nitrate uptake and accelerating biomass accumulation. DsGATA1 affected the expression of the genes encoding GOGAT, GDH, and ammonia transporter proteins. Moreover, our study revealed that the regulation of N metabolism by DsGATA1 led to the production of NO molecules that inhibited carotenoid synthesis. However, DsGATA1 significantly enhanced carotenoid synthesis by NO scavenger removal of NO. The D. salina carotenoid accumulation under red light was elevated by 46% in the presence of overexpression of DsGATA1 and NO scavenger. Nevertheless, our results indicated that DsGATA1 could be an important target for engineering carotenoid production. KEY POINTS: • DsGATA1 with a distinct structure and recognition motif was found in D. salina • DsGATA1 enhanced carotenoid production and biomass in D. salina under red light • DsGATA1 is involved in the regulation of N metabolism and carotenoid synthesis.


Asunto(s)
Chlorophyceae , Luz Roja , Animales , Amoníaco , Evolución Biológica , Carotenoides
20.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940906

RESUMEN

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Asunto(s)
Biopelículas , Botrytis , Fragaria , Proteínas Fúngicas , Hifa , Proteínas de la Membrana , Enfermedades de las Plantas , Botrytis/patogenicidad , Botrytis/genética , Botrytis/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Virulencia , Hifa/crecimiento & desarrollo , Hifa/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Fragaria/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Vitis/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Eliminación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA