Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hazard Mater ; 443(Pt B): 130249, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36332276

RESUMEN

Brain volume decrease in the anterior cingulate cortex (ACC) after lead (Pb) exposure has been linked to persistent impairment of attention behavior. However, the precise structural change and molecular mechanism for the Pb-induced ACC alteration and its contribution to inattention have yet to be fully characterized. The present study determined the role of miRNA regulated synaptic structural and functional impairment in the ACC and its relationship to attention deficit disorder in Pb exposed mice. Results showed that Pb exposure induced presynaptic impairment and structural alterations in the ACC. Furthermore, we screened for critical miRNA targets responsible for the synaptic alteration. We found that miR-130, which regulates presynaptic vesicle releasing protein SNAP-25, was responsible for the presynaptic impairment in the ACC and attention deficits in mice. Blocking miR-130 function reversed the Pb-induced decrease in the expression of its presynaptic target SNAP-25, leading to the redistribution of presynaptic vesicles, as well as improved presynaptic function and attention in Pb exposed mice. We report, for the first time, that miR-130 regulating SNAP-25 mediates Pb-induced presynaptic structural and functional impairment in the ACC along with attention deficit disorder in mice.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , MicroARNs , Animales , Ratones , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Cognición , Giro del Cíngulo/metabolismo , Plomo/toxicidad , Plomo/metabolismo , MicroARNs/metabolismo
2.
Front Cell Dev Biol ; 9: 779373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869383

RESUMEN

The quiescence, activation, and subsequent neurogenesis of neural stem cells (NSCs) play essential roles in the physiological homeostasis and pathological repair of the central nervous system. Previous studies indicate that transmembrane protein Ttyh1 is required for the stemness of NSCs, whereas the exact functions in vivo and precise mechanisms are still waiting to be elucidated. By constructing Ttyh1-promoter driven reporter mice, we determined the specific expression of Ttyh1 in quiescent NSCs and niche astrocytes. Further evaluations on Ttyh1 knockout mice revealed that Ttyh1 ablation leads to activated neurogenesis and enhanced spatial learning and memory in adult mice (6-8 weeks). Correspondingly, Ttyh1 deficiency results in accelerated exhaustion of NSC pool and impaired neurogenesis in aged mice (12 months). By RNA-sequencing, bioinformatics and molecular biological analysis, we found that Ttyh1 is involved in the regulation of calcium signaling in NSCs, and transcription factor NFATc3 is a critical effector in quiescence versus cell cycle entry regulated by Ttyh1. Our research uncovered new endogenous mechanisms that regulate quiescence versus activation of NSCs, therefore provide novel targets for the intervention to activate quiescent NSCs to participate in injury repair during pathology and aging.

3.
Front Cell Dev Biol ; 9: 648261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718391

RESUMEN

Lead (Pb) can cause a significant neurotoxicity in both adults and children, leading to the impairment to brain function. Pb exposure plays a key role in the impairment of learning and memory through synaptic neurotoxicity, resulting in the cognitive function. Researches have demonstrated that Pb exposure plays an important role in the etiology and pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. However, the underlying mechanisms remain unclear. In the current study, a gestational Pb exposure (GLE) rat model was established to investigate the underlying mechanisms of Pb-induced cognitive impairment. We demonstrated that low-level gestational Pb exposure impaired spatial learning and memory as well as hippocampal synaptic plasticity at postnatal day 30 (PND 30) when the blood concentration of Pb had already recovered to normal levels. Pb exposure induced a decrease in hippocampal glucose metabolism by reducing glucose transporter 4 (GLUT4) levels in the cell membrane through the phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) pathway. In vivo and in vitro GLUT4 over-expression increased the membrane translocation of GLUT4 and glucose uptake, and reversed the Pb-induced impairment to synaptic plasticity and cognition. These findings indicate that Pb exposure impairs synaptic plasticity by reducing the level of GLUT4 in the cell membrane as well as glucose uptake via the PI3K-Akt signaling pathway, demonstrating a novel mechanism for Pb exposure-induced neurotoxicity.

4.
Medicine (Baltimore) ; 99(47): e23258, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33217848

RESUMEN

Amyotrophic lateral sclerosis (ALS), a specific neurodegenerative disease, imposed increased economic and utilizations burden on the healthcare system, especially with the progress of the diseases severity. However, the economic burden on Chinese ALS patients remained unclear. This study therefore was aimed to investigate medical cost and healthcare utilization for Chinese ALS patients.Longitudinal health data of over 20 million individuals, including military personnel and civilians, was collected from all Chinese military hospitals. We identified 480 patients with a first major diagnosis for ALS from 2015 to 2018, while matched 400 controlled patients on age, gender, ethnic group, geographic region, length of stay, year of diagnosis and comorbidity. Their medical cost and healthcare utilizations were then measured 1 year before, and 1 year after ALS diagnosis.The median annual medical cost of ALS patients was about 2-fold higher, 17,087 CNY during the index year than 1 year before, 7859 CNY. The highest increase in utilizations may account for medical costs on ALS patients, which was represented by hospitalizations (Odd Ratio (OR) = 4.26, 95% confidence interval (CI) 3.52, 5.15), electromyography (OR = 4.14, 95% CI 2.37, 7.22), nerve conduction velocity (OR = 3.26, 95% CI 2.23, 4.77).This study is the first one reporting direct economic burden on Chinese ALS patients. Efforts should be made to develop cost-effective diagnostic tools in order that sources of medical cost were more effectively allocated, and this disease was detected earlier.


Asunto(s)
Esclerosis Amiotrófica Lateral/economía , Esclerosis Amiotrófica Lateral/terapia , Costo de Enfermedad , Aceptación de la Atención de Salud/estadística & datos numéricos , Adolescente , Adulto , China , Estudios de Cohortes , Femenino , Registros de Hospitales , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
5.
Neurosci Lett ; 418(3): 217-21, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17466453

RESUMEN

Dietary conjugated linoleic acid (CLA) has been investigated for its beneficial effects on disease prevention and treatment, and now obesity is one of the most perspective researching highlights. In a variety of experimental models, the results of studies on the effects of CLA on food intakes are somewhat inconsistent. Our experiment was conducted to extend these observations to hypothalamus and other regions within the central nervous system so that the mechanism of the actions of CLA might be more easily elucidated. In the experiment, a permanent cannula was inserted into the lateral ventricle of each rat. For the experiment, animals received intracerebroventricular injections of either 150nmol (n=16) CLA, or LA as non-conjugated control, or normal saline as vehicle. Hypothalamus and blood samples were collected at the 2nd, 4th, 8th, and 14th day. The results show that CLA in cerebral ventricle can inhibit food intake of experimented rats and this inhibition is related with the decreased expression of neuropeptides Y (NPY) and agouti-related protein (AgRP). The circulating leptin level was also increased by this tentative treatment (2.94+/-0.71 versus 1.18+/-0.18ng/ml). However, the glucose metabolism was not affected by ICV CLA. It is concluded that CLA in brain can inhibit the appetite of rats through the mechanism of decreasing the expression of NPY and AgRP.


Asunto(s)
Conducta Animal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ácido Linoleico/administración & dosificación , Neuropéptido Y/metabolismo , Proteína Relacionada con Agouti , Animales , Peso Corporal/efectos de los fármacos , Inyecciones Intraventriculares/métodos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Neuropéptido Y/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA