Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 170, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781939

RESUMEN

The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Microscopía/métodos , Encéfalo/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Formaldehído
2.
PLoS Comput Biol ; 4(8): e1000159, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18769707

RESUMEN

Several approaches exist to ascertain the connectivity of the brain, and these approaches lead to markedly different topologies, often incompatible with each other. Specifically, recent single-cell recording results seem incompatible with current structural connectivity models. We present a novel method that combines anatomical and temporal constraints to generate biologically plausible connectivity patterns of the visual system of the macaque monkey. Our method takes structural connectivity data from the CoCoMac database and recent single-cell recording data as input and employs an optimization technique to arrive at a new connectivity pattern of the visual system that is in agreement with both types of experimental data. The new connectivity pattern yields a revised model that has fewer levels than current models. In addition, it introduces subcortical-cortical connections. We show that these connections are essential for explaining latency data, are consistent with our current knowledge of the structural connectivity of the visual system, and might explain recent functional imaging results in humans. Furthermore we show that the revised model is not underconstrained like previous models and can be extended to include newer data and other kinds of data. We conclude that the revised model of the connectivity of the visual system reflects current knowledge on the structure and function of the visual system and addresses some of the limitations of previous models.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Tiempo de Reacción/fisiología , Biología de Sistemas/métodos , Corteza Visual/fisiología , Animales , Ganglios Basales/fisiología , Bases de Datos Factuales , Electrofisiología , Macaca , Transducción de Señal , Factores de Tiempo , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA