Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Org Chem ; 88(7): 4546-4553, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36988421

RESUMEN

Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific double-modification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes.


Asunto(s)
Péptidos , Compuestos de Sulfhidrilo , Maleimidas/síntesis química , Maleimidas/química
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834877

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive powerful modern clinical technique that is extensively used for the high-resolution imaging of soft tissues. To obtain high-definition pictures of tissues or of the whole organism this technique is enhanced by the use of contrast agents. Gadolinium-based contrast agents have an excellent safety profile. However, over the last two decades, some specific concerns have surfaced. Mn(II) has different favorable physicochemical characteristics and a good toxicity profile, which makes it a good alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Mn(II)-disubstituted symmetrical complexes containing dithiocarbamates ligands were prepared under a nitrogen atmosphere. The magnetic measurements on Mn complexes were carried out with MRI phantom measurements at 1.5 T with a clinical magnetic resonance. Relaxivity values, contrast, and stability were evaluated by appropriate sequences. Studies conducted to evaluate the properties of paramagnetic imaging in water using a clinical magnetic resonance showed that the contrast, produced by the complex [Mn(II)(L')2] × 2H2O (L' = 1.4-dioxa-8-azaspiro[4.5]decane-8-carbodithioate), is comparable to that produced by gadolinium complexes currently used in medicine as a paramagnetic contrast agent.


Asunto(s)
Medios de Contraste , Manganeso , Manganeso/química , Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
3.
MAGMA ; 35(1): 87-104, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35032288

RESUMEN

Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both D-glucose and glucose analogs, such as 3-oxy-methyl-D-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the "glucoCEST Imaging of Neoplastic Tumors (GLINT)" consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.


Asunto(s)
Glucosa , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos
4.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361667

RESUMEN

A total of 20% to 50% of prostate cancer (PCa) patients leave the surgery room with positive tumour margins. The intraoperative combination of fluorescence guided surgery (FGS) and photodynamic therapy (PDT) may be very helpful for improving tumour margin delineation and cancer therapy. PSMA is a transmembrane protein overexpressed in 90−100% of PCa cells. The goal of this work is the development of a PSMA-targeted Near InfraRed Fluorescent probe to offer the surgeon a valuable intraoperative tool for allowing a complete tumour removal, implemented with the possibility of using PDT to kill the eventual not resected cancer cells. PSMA-617 binding motif was conjugated to IRDye700DX-NHS and the conjugation did not affect the photophysical characteristics of the fluorophore. The affinity of IRDye700DX-PSMA-617 towards PCa cells followed the order of their PSMA expression, i.e., PC3-PIP > LNCaP > PC3, PC3-FLU. NIRF imaging showed a significant PC3-PIP tumour uptake after the injection of 1 or 5 nmol with a maximum tumour-to-muscle ratio (ca. 60) observed for both doses 24 h post-injection. Importantly, urine, healthy prostate, and the bladder were not fluorescent at 24 h post-injection. Flow cytometry and confocal images highlighted a co-localization of PSMA+ cells with IRDye700DX-PSMA uptake. Very interestingly, ex vivo analysis on a tumour specimen highlighted a significant PSMA expression by tumour-associated macrophages, likely attributable to extracellular vesicles secreted by the PSMA(+) tumour cells. FGS proved that IRDye700DX-PSMA was able to easily delineate tumour margins. PDT experiments showed a concentration-dependent decrease in cell viability (from 75% at 10 nM to 12% at 500 nM), whereas controls did not show any cytotoxicity. PC3-PIP tumour-bearing mice subjected to photodynamic therapy showed a delayed tumour growth. In conclusion, a novel PSMA-targeted NIRF dye with dual imaging-PDT capabilities was synthesized and displayed superior specificity compared to other small PSMA targeted molecules.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Cirugía Asistida por Computador , Animales , Humanos , Masculino , Ratones , Antígenos de Superficie , Línea Celular Tumoral , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Cirugía Asistida por Computador/métodos
5.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630601

RESUMEN

The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties.


Asunto(s)
Liposomas , Manganeso , Humanos , Iones , Liposomas/química , Imagen por Resonancia Magnética/métodos , Nanotecnología , Tomografía de Emisión de Positrones
6.
J Am Chem Soc ; 143(35): 14178-14188, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432442

RESUMEN

The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Deferasirox/análogos & derivados , Animales , Sitios de Unión , Línea Celular Tumoral , Medios de Contraste/metabolismo , Medios de Contraste/farmacocinética , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacocinética , Deferasirox/metabolismo , Deferasirox/farmacocinética , Femenino , Humanos , Hierro/química , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Unión Proteica , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
7.
NMR Biomed ; 34(12): e4602, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34423470

RESUMEN

D-Glucose and 3-O-Methyl-D-glucose (3OMG) have been shown to provide contrast in magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) images. However, a systematic comparison between these two molecules has yet to be performed. The current study deals with the assessment of the effect of pH, saturation power level (B1 ) and magnetic field strength (B0 ) on the MRI-CEST contrast with the aim of comparing the in vivo CEST contrast detectability of these two agents in the glucoCEST procedure. Phosphate-buffered solutions of D-Glucose or 3OMG (20 mM) were prepared at different pH values and Z-spectra were acquired at several B1 levels at 37°C. In vivo glucoCEST images were obtained at 3 and 7 T over a period of 30 min after injection of D-Glucose or 3OMG (at doses of 1.5 or 3 g/kg) in a murine melanoma tumor model (n = 3-5 mice for each molecule, dose and B0 field). A markedly different pH dependence of CEST response was observed in vitro for D-Glucose and 3OMG. The glucoCEST contrast enhancement in the tumor region following intravenous administration (at the 3 g/kg dose) was comparable for both molecules: 1%-2% at 3 T and 2%-3% at 7 T. The percentage change in saturation transfer that resulted was almost constant for 3OMG over the 30-min period, whereas a significant increase was detected for D-Glucose. Our results show similar CEST contrast efficiency but different temporal kinetics for the metabolizable and the nonmetabolizable glucose derivatives in a tumor murine model when administered at the same doses.


Asunto(s)
3-O-Metilglucosa/química , Glucosa/química , Imagen por Resonancia Magnética/métodos , Melanoma Experimental/diagnóstico por imagen , Animales , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Campos Magnéticos , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
Molecules ; 26(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920423

RESUMEN

Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inmunoterapia Adoptiva/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Radiofármacos/síntesis química , Inteligencia Artificial , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Fluorodesoxiglucosa F18/administración & dosificación , Fluorodesoxiglucosa F18/química , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Neoplasias/genética , Neoplasias/inmunología , Tomografía de Emisión de Positrones/métodos , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Radiofármacos/administración & dosificación , Transducción de Señal , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
9.
Cancer Metastasis Rev ; 38(1-2): 25-49, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30762162

RESUMEN

Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.


Asunto(s)
Acidosis/diagnóstico por imagen , Acidosis/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Acidosis/patología , Animales , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/patología
10.
Nanomedicine ; 13(2): 693-700, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27720928

RESUMEN

The current study was performed to evaluate the in vivo efficiency of a new nano-sized contrast agent called paramagnetic Solid Lipid Nanoparticles, pSLNs, having promising relaxivity properties for Magnetic Resonance Imaging application. Good stability and stealth properties toward macrophage uptake have been demonstrated. An in vivo MRI study resulted in an improved signal enhancement in the tumor tissue particularly when folate as targeting ligand was used to decorate the nanoparticles surface. Afterward, the biodistribution of pSLNs in several organs was investigated. The accumulation of pSLNs in kidneys, femoral bones, spleen and brain was quite low while high tropism of pSLNs was found for the liver. In this regard, approaches to improve the rate of the hepatic clearance have been proposed.


Asunto(s)
Lípidos , Imagen por Resonancia Magnética , Nanopartículas , Línea Celular Tumoral , Humanos , Distribución Tisular
11.
Sci Rep ; 13(1): 16747, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798332

RESUMEN

A new bismuth-based CT agent was synthesized through a facile synthesis strategy. The in vitro stability, toxicity and CT performance were evaluated. The in vivo imaging performance was investigated using three different doses (0.5, 1.2 and 5 mmol/kg) and the result obtained at 1.2 mmol/kg was compared with the clinically approved CT agent iopamidol at the same dosage.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Bismuto
12.
Mol Imaging Biol ; 24(1): 126-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34383241

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES: Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS: Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS: Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Radiofármacos/uso terapéutico , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
13.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36230838

RESUMEN

The tumor microenvironment acidification confers treatment resistance; therefore, the interference with pH regulating systems is considered a new therapeutic strategy. In this study, two human prostate cancer cell lines, PC3 and LNCaP, have been treated in vitro with proton pump inhibitors (PPIs), namely Lansoprazole, Esomeprazole (V-ATPases-inhibitors), Cariporide, and Amiloride (NHE1-inhibitors). The cell viability and pH were assessed at several drug concentrations either at normoxic or hypoxic conditions. Since Esomeprazole showed the highest toxicity towards the PC3 cancer cells compared to LNCaP ones, athymic nude mice bearing subcutaneous or orthotopic PC3 tumors were treated with Esomeprazole (dose: 2.5 mg/kg body weight) for a period of three weeks-and tumor growth was monitored. MRI-CEST tumor pH imaging with Iopamidol was performed upon treatment at 3 h, 1 week (in combination with FDG-PET), and after 2 weeks for evaluating acute, early, and late responses. Although acute tumor pH changes were observed in vivo, long-term studies on both PC3 prostate cancer models did not provide any significant change in tumor acidosis or tumor growth. In conclusion, this work shows that MRI-CEST tumor pH imaging is a valuable tool for assessing the in vivo treatment response to PPIs.

14.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572771

RESUMEN

Lung cancer remains the leading cause of cancer-related death, and it is usually diagnosed in advanced stages (stage III or IV). Recently, the availability of targeted strategies and of immunotherapy with checkpoint inhibitors (ICI) has favorably changed patient prognosis. Treatment outcome is closely related to tumor biology and interaction with the tumor immune microenvironment (TME). While the response in molecular targeted therapies relies on the presence of specific genetic alterations in tumor cells, accurate ICI biomarkers of response are lacking, and clinical outcome likely depends on multiple factors that are both host and tumor-related. This paper is an overview of the ongoing research on predictive factors both from in vitro/ex vivo analysis (ranging from conventional pathology to molecular biology) and in vivo analysis, where molecular imaging is showing an exponential growth and use due to technological advancements and to the new bioinformatics approaches applied to image analyses that allow the recovery of specific features in specific tumor subclones.

15.
Front Oncol ; 10: 161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133295

RESUMEN

Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.

16.
J Biophotonics ; 12(3): e201800217, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30350407

RESUMEN

The recent discovery of fluorescent dyes for improving pathologic tissues identification has highlighted the need of robust methods for performance validation especially in the field of fluorescence-guided surgery. Optical imaging of excised tissue samples is the reference tool to validate the association between dyes localization and the underlying histology in a controlled environment. Spectral unmixing may improve the validation process discriminating dye from endogenous signal. Here, an innovative spectral modeling approach that weights the spectral shifts associated with changes in chemical environment is described. The method is robust against spectral shift variations and its application leads to unbiased spectral weights estimates as demonstrated by numerical simulations. Finally, spectral shifts values computed pixel-wise from spectral images are used to display additional information with potential diagnostic value.


Asunto(s)
Modelos Teóricos , Imagen Óptica , Carbocianinas/química , Colorantes Fluorescentes/química , Péptidos Cíclicos/química
17.
Photoacoustics ; 11: 36-45, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30105205

RESUMEN

PhotoAcoustic Imaging (PAI) is a biomedical imaging modality currently under evaluation in preclinical and clinical settings. In this work, ICG is coupled to an integrin binding vector (ICG-RGD) to combine the good photoacoustic properties of ICG and the favourable αvß3-binding capabilities of a small RGD cyclic peptidomimetic. ICG-RGD is characterized in terms of physicochemical properties, biodistribution and imaging performance. Tumor uptake was assessed in subcutaneous xenograft mouse models of human glioblastoma (U-87MG, high αvß3 expression) and epidermoid carcinoma (A431, low αvß3 expression). ICG and ICG-RGD showed high PA signal in tumors already after 15 min post-injection. At later time points the signal of ICG rapidly decreased, while ICG-RGD showed sustained uptake in U-87MG but not in A431 tumors, likely due to the integrin-mediated retention of the probe. In conclusion, ICG-RGD is a novel targeted contrast agents for PAI with superior biodistribution, tumor uptake properties and diagnostic value compared to ICG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA