Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 86(5): 1307-1316, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37172063

RESUMEN

Compounds isolated from botanical sources represent innovative and promising alternatives to conventional insecticides. Carlina oxide is a compound isolated from Carlina acaulis L. (Asteraceae) essential oil (EO) with great potential as bioinsecticide, being effective on various arthropod vectors and agricultural pests, with moderate toxicity on non-target species. Since the production from the wild source is limited, there is the need of exploring new synthetic routes for obtaining this compound and analogues with improved bioactivity and lower toxicity. Herein, the chemical synthesis of carlina oxide analogues was developed. Their insecticidal activity was assessed on the vectors Musca domestica L. and Culex quinquefasciatus Say, and their cytotoxicity was evaluated on a human keratinocyte cell line (HaCaT). The compounds' activity was compared with that of the natural counterparts EO and carlina oxide. In housefly tests, the analogues were comparably effective to purified carlina oxide. In Cx. quinquefasciatus assays, the meta-chloro analogue provided a significantly higher efficacy (LC50 of 0.71 µg mL-1) than the EO and carlina oxide (LC50 1.21 and 1.31 µg mL-1, respectively) and a better safety profile than carlina oxide on keratinocytes. Overall, this study can open the way to an agrochemical production of carlina oxide analogues employable as nature-inspired insecticides.


Asunto(s)
Asteraceae , Culex , Insecticidas , Aceites Volátiles , Animales , Humanos , Insecticidas/farmacología , Larva , Mosquitos Vectores , Aceites Volátiles/farmacología , Aceites Volátiles/química , Asteraceae/química
2.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770640

RESUMEN

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Asunto(s)
NAD , Niacina , Humanos , NAD/metabolismo , Línea Celular Tumoral , Pentosiltransferasa , Nicotinamida Fosforribosiltransferasa , Citocinas/metabolismo , Niacina/farmacología
3.
Med Chem Res ; 30(2): 353-370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33519168

RESUMEN

The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.

4.
Molecules ; 25(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660058

RESUMEN

The rationale inspiring the discovery of lead compounds for the treatment of human parasitic protozoan diseases from natural sources is the well-established use of medicinal plants in various systems of traditional medicine. On this basis, we decided to select an overlooked medicinal plant growing in central Italy, Marrubium incanum Desr. (Lamiaceae), which has been used as a traditional remedy against protozoan diseases, and to investigate its potential against Human African trypanosomiasis (HAT). For this purpose, we assayed three extracts of different polarities obtained from the aerial parts of M. incanum-namely, water (MarrInc-H2O), ethanol (MarrInc-EtOH) and dichloromethane (MarrInc-CH2Cl2)-against Trypanosoma brucei (TC221), with the aim to discover lead compounds for the development of antitrypanosomal drugs. Their selectivity index (SI) was determined on mammalian cells (BALB/3T3 mouse fibroblasts) as a counter-screen for toxicity. The preliminary screening selected the MarrInc-CH2Cl2 extract as the most promising candidate against HAT, showing an IC50 value of 28 µg/mL. On this basis, column chromatography coupled with the NMR spectroscopy of a MarrInc-CH2Cl2 extract led to the isolation and identification of five compounds i.e. 1-α-linolenoyl-2-palmitoyl-3-stearoyl-sn- glycerol (1), 1-linoleoyl-2-palmitoyl-3-stearoyl-sn-glycerol (2), stigmasterol (3), palmitic acid (4), and salvigenin (5). Notably, compounds 3 and 5 were tested on T. brucei, with the latter being five-fold more active than the MarrInc-CH2Cl2 extract (IC50 = 5.41 ± 0.85 and 28 ± 1.4 µg/mL, respectively). Furthermore, the SI for salvigenin was >18.5, showing a preferential effect on target cells compared with the dichloromethane extract (>3.6). Conversely, stigmasterol was found to be inactive. To complete the work, also the more polar MarrInc-EtOH extract was analyzed, giving evidence for the presence of 2″-O-allopyranosyl-cosmosiin (6), verbascoside (7), and samioside (8). Our findings shed light on the phytochemistry of this overlooked species and its antiprotozoal potential, providing evidence for the promising role of flavonoids such as salvigenin for the treatment of protozoal diseases.


Asunto(s)
Marrubium/química , Extractos Vegetales/química , Tripanocidas , Trypanosoma brucei brucei/crecimiento & desarrollo , Células 3T3 , Animales , Humanos , Ratones , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Tripanocidas/farmacología
5.
Molecules ; 24(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832296

RESUMEN

Every year Chile exports about 2000 tons of boldo folium (Peumus boldus), which is used around the world as a traditional herbal medicinal product (THMP), mostly to relieve gastrointestinal disorders. This biomass may be a resource for the agrochemical industry to manufacture botanical insecticides. In this regard, the insecticidal potential of boldo has been poorly investigated. In the present work, hydrodistillation of a commercial boldo folium gave 1.5% (w/w) of a yellowish essential oil (boldo essential oil, BEO) containing 1,8-cineole (20.7%), p-cymene (18.5%), limonene (9.1%), ascaridole (9.1%) and ß-phellandrene (6.4%) as the main constituents, as determined by gas chromatography-mass spectrometry (GC-MS). NMR analysis allowed us to determine that ascaridole was mainly represented by the cis-isomer. BEO was toxic to larvae of the filariasis vector Culex quinquefasciatus and adults of the housefly Musca domestica, showing LC50/LD50 values of 67.9 mg·L-1 and 98.5 µg·adult-1, respectively. On the other hand, lower insecticidal activity was observed against larvae of the moth pest Spodoptera littoralis (LD50 of 268.9 µg·larva-1). It is worth noting that, when tested at LC90 concentration, BEO was significantly less toxic to aquatic microcrustacean Daphnia magna than the conventional insecticide α-cypermethrin. Finally, in the attempt to explore the BEO mode of action, we tested it for acetylcholinesterase (AChE) inhibitory properties using the Ellman method, obtaining negligible effects (IC50 = 0.45 mg·mL-1). Taken together, these results gave new insights into the potential of BEO as a future ingredient of botanical insecticides.


Asunto(s)
Daphnia/efectos de los fármacos , Insecticidas/farmacología , Aceites Volátiles/farmacología , Peumus/química , Animales , Culex/efectos de los fármacos , Monoterpenos Ciclohexánicos , Ciclohexenos/química , Cimenos , Cromatografía de Gases y Espectrometría de Masas , Moscas Domésticas/efectos de los fármacos , Humanos , Insecticidas/química , Larva/efectos de los fármacos , Dosificación Letal Mediana , Monoterpenos/química , Mosquitos Vectores/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Aceites Volátiles/química , Peróxidos/química , Piretrinas/química
6.
Molecules ; 24(14)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311079

RESUMEN

Developing effective and eco-friendly antiparasitic drugs and insecticides is an issue of high importance nowadays. In this study, we evaluated the anthelminthic and insecticidal potential of the leaf essential oil obtained from Origanum syriacum against the L3 larvae of the parasitic nematode Anisakis simplex and larvae and adults of the mosquito Culex quinquefasciatus. Tests on A. simplex were performed by standard larvicidal and penetration assays, while mosquito toxicity was assessed relying on larvicidal, tarsal contact, and fumigation tests. To shed light on the possible mode of action, we analyzed the oil impact as acetylcholinesterase (AChE) inhibitor. This oil was particularly active on L3 larvae of A. simplex, showing a LC50 of 0.087 and 0.067 mg mL-1 after 24 and 48 h treatment, respectively. O. syriacum essential oil was highly effective on both larvae and adults of C. quinquefasciatus, showing LC50 values of 32.4 mg L-1 and 28.1 µg cm-2, respectively. Its main constituent, carvacrol, achieved larvicidal LC50(90) of 29.5 and 39.2 mg L-1, while contact toxicity assays on adults had an LC50(90) of 25.5 and 35.8 µg cm-2, respectively. In fumigation assays, the LC50 was 12.1 µL L-1 after 1 h and decreased to 1.3 µL L-1 in 24 h of exposure. Similarly, the fumigation LC50 of carvacrol was 8.2 µL L-1 after 1 h of exposure, strongly decreasing to 0.8 µL L-1 after 24 h of exposure. These results support the folk usage of Lebanese oregano as an antiparasitic agent, providing new insights about its utilization for developing new effective and eco-friendly nematocidal and insecticidal products.


Asunto(s)
Anisakis/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Culex/efectos de los fármacos , Aceites Volátiles/farmacología , Origanum/química , Animales , Inhibidores de la Colinesterasa/química , Cimenos/farmacología , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
7.
Inorg Chem ; 57(22): 14123-14133, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30362721

RESUMEN

Three pyrazolone-based hydrazone ligands HL' (HL' in general; in detail, HL1 = 2-((5-hydroxo-3-methyl-1-phenyl-1 H-pyrazol-4-yl)(phenyl)methylene)-1-(2,4-nitrophenyl)hydrazine, HL2 = 2-((5-hydroxo-3-methyl-1-phenyl-1 H-pyrazol-4-yl) (phenyl)methylene)-1-(4-nitrophenyl)hydrazine, and HL3 = 2-((5-hydroxo-3-methyl-1-phenyl-1 H-pyrazol-4-yl)(phenyl)methylene)-1-(pyridin-2-yl)hydrazine) have been prepared starting from 4-benzoyl-3-methyl-1-phenyl-1 H-pyrazol-5(4 H)-one and fully characterized in the solid state and solution, where the existing tautomeric forms were identified by taking advantage of natural abundance 1H-15N coupling in {1H-15N}-HSQC and {1H-15N}-HMBC NMR spectroscopy. Then, six half-sandwich arene-ruthenium(II) derivatives (arene = hexamethylbenzene and p-cymene) of composition [(arene)Ru(L')Cl] have been synthesized and fully characterized by IR, 1H, and 13C NMR spectroscopy, electrospray ionization mass spectrometry, elemental analysis, and density functional theory calculations. The crystal structures of three complexes, together with the E configurational isomer (with respect to the C═N double bond) of the free proligand HL2 and the zwitterionic proligand HL3 were determined by X-ray analysis. The anionic ligands L1 and L2 were found bonded to ruthenium in the N,O-form, while L3 coordinates the metal in the N,N-form affording five-membered chelating rings. The cytotoxicity of the complexes was evaluated against human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against nontumorigenic human breast (MCF-10A) cells and compared to the free ligand and cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Diseño de Fármacos , Hidrazonas/farmacología , Pirazolonas/farmacología , Rutenio/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Ligandos , Modelos Químicos , Estructura Molecular , Pirazolonas/síntesis química , Pirazolonas/química , Teoría Cuántica
8.
Ecotoxicol Environ Saf ; 156: 154-165, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29549739

RESUMEN

The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC50 in the range 2.7-10.7 µg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, ß-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC50 value of 0.035 µg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC50 in the range 1.0-6.0 µg/mL (7.4-44 µM) had also good SI: α-pinene (>100), ß-ocimene (>91), limonene (>18) and sabinene (>17). In conclusion, these results highlight that the essential oils from the Apiaceae family are a reservoir of substances to be used as leading compounds for the development of natural drugs for the treatment of HAT.


Asunto(s)
Apiaceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Células 3T3 , Monoterpenos Acíclicos , Alquenos/farmacología , Derivados de Alilbenceno , Animales , Compuestos de Bencilo/farmacología , Monoterpenos Bicíclicos , Monoterpenos Ciclohexánicos , Ciclohexenos/farmacología , Cimenos , Dioxolanos/farmacología , Concentración 50 Inhibidora , Limoneno , Ratones , Monoterpenos/farmacología , Pirogalol/análogos & derivados , Pirogalol/farmacología , Terpenos/farmacología , Tripanosomiasis/tratamiento farmacológico
9.
Molecules ; 22(6)2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28621748

RESUMEN

There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds. In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae. All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.


Asunto(s)
Acaricidas/química , Acaricidas/farmacología , Boraginaceae/química , Naftoquinonas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Tetranychidae/efectos de los fármacos , Animales
10.
Molecules ; 21(8)2016 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-27529211

RESUMEN

Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 µmol·TE/g).


Asunto(s)
Erigeron/química , Aceites Volátiles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
11.
Bioorg Med Chem Lett ; 24(22): 5304-9, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25304896

RESUMEN

We synthesized a series of serum-stable covalently linked drugs derived from 3'-C-methyladenosine (3'-Me-Ado) and valproic acid (VPA), which are ribonucleotide reductase (RR) and histone deacetylase (HDAC) inhibitors, respectively. While the combination of free VPA and 3'-Me-Ado resulted in a clear synergistic apoptotic effect, the conjugates had lost their HDAC inhibitory effect as well as the corresponding apoptotic activity. Two of the analogs, 2',5'-bis-O-valproyl-3'-C-methyladenosine (A160) and 5'-O-valproyl-3'-C-methyladenosine (A167), showed promising cytotoxic activities against human hematological and solid cancer cell lines. A167 was less potent than A160 but had interesting features as an RR inhibitor. It inhibited RR activity by competing with ATP as an allosteric effector and concomitantly reduced the intracellular deoxyribonucleoside triphosphate (dNTP) pools. A167 represents a novel lead compound, which in contrast to previously used RR nucleoside analogs does not require intracellular kinases for its activity and therefore holds promise against drug resistant tumors with downregulated nucleoside kinases.


Asunto(s)
Adenosina/análogos & derivados , Inhibidores Enzimáticos/síntesis química , Ribonucleótido Reductasas/antagonistas & inhibidores , Ácido Valproico/química , Adenosina/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ésteres/química , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Cinética , Ribonucleótido Reductasas/metabolismo
12.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38931406

RESUMEN

Nicotinamide adenine dinucleotide (NAD) cofactor metabolism plays a significant role in cancer development. Tumor cells have an increased demand for NAD and ATP to support rapid growth and proliferation. Limiting the amount of available NAD by targeting critical NAD biosynthesis enzymes has emerged as a promising anticancer therapeutic approach. In mammals, the enzyme nicotinamide/nicotinic acid adenylyltransferase (NMNAT) catalyzes a crucial downstream reaction for all known NAD synthesis routes. Novel nicotinamide/nicotinic acid adenine dinucleotide (NAD/NaAD) analogues 1-4, containing a methyl group at the ribose 2'-C and 3'-C-position of the adenosine moiety, were synthesized as inhibitors of the three isoforms of human NMN-adenylyltransferase, named hNMNAT-1, hNMNAT-2, and hNMNAT-3. An NMR-based conformational analysis suggests that individual NAD-analogues (1-4) have distinct conformational preferences. Biological evaluation of dinucleotides 1-4 as inhibitors of hNMNAT isoforms revealed structural relationships between different conformations (North-anti and South-syn) and enzyme-inhibitory activity. Among the new series of NAD analogues synthesized and tested, the 2'-C-methyl-NAD analogue 1 (Ki = 15 and 21 µM towards NMN and ATP, respectively) emerged as the most potent and selective inhibitor of hNMNAT-2 reported so far. Finally, we rationalized the in vitro bioactivity and selectivity of methylated NAD analogues with in silico studies, helping to lay the groundwork for rational scaffold optimization.

13.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111390

RESUMEN

In recent years, agrochemical industries have been focused on the development of essential oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of biological activities, and some of their EOs showed good potential as pesticidal agents. In this regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults, Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 µL L-1, 4.9 ± 0.8 mL L-1, 18.5 ± 2.1 µg larvae-1, and 3.3 ± 0.5 mL L-1, respectively. On the contrary, Musca domestica L. adults and 3rd instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50 or LD50: 71.4 ± 7.2 µg adult-1, 79.4 ± 5.2 µL L-1, 44.2 ± 5.8 µg larvae-1, respectively). The results obtained in this work demonstrated that various insects and pests could be differently sensible to the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel ingredients of botanical insecticides and pesticides.

14.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37259338

RESUMEN

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

15.
J Biol Inorg Chem ; 17(3): 409-23, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22189939

RESUMEN

Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2'-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H(2)O(2). However, without extracellular reductants only weak intracellular ROS generation was observed at IC(50) levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Organometálicos/farmacología , Especies Reactivas de Oxígeno , Tiosemicarbazonas/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Electroquímica , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Oxidación-Reducción/efectos de los fármacos , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química
16.
Molecules ; 17(12): 13712-26, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23174891

RESUMEN

This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A(1) receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A(1) adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A(1) receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A(1) receptor agonist in neuropathic pain symptoms.


Asunto(s)
Agonistas del Receptor de Adenosina A1/administración & dosificación , Adenosina/análogos & derivados , Neuralgia/tratamiento farmacológico , Norbornanos/administración & dosificación , Receptor de Adenosina A1/metabolismo , Adenosina/administración & dosificación , Animales , Sistema Cardiovascular/efectos de los fármacos , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Ratones , Microglía/metabolismo , Microglía/patología , Actividad Motora/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Xantinas/administración & dosificación
17.
Antibiotics (Basel) ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35453199

RESUMEN

The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum), Cuminum cyminum L. (C. cyminum), x Cupressocyparis leylandii A.B. Jacks & Dallim. (C. leylandii), Cupressus arizonica Greene (C. arizonica), Ferula assa-foetida L. (F. assa-foetida)., Ferula gummosa Boiss. (F. gummosa), Juniperus communis L. (J. communis), Juniperus x pfitzeriana (Spath) P.A. Schmidt (J. pfitzeriana), Pimpinella anisum L (P. anisum). Preliminary screening revealed that Cuminum cyminum, Crithmum maritimum, and Pimpinella anisum (10% v/v) were effective against all tested microorganisms (Escherichia coli ATCC 35218, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 29213, Pseudomonas fluorescens DSM 4358, and Candida albicans ATCC 10231), with growth inhibition diameter from 10 to 25 mm. These EOs were used to formulate the MEs with an average size < 50 nm and a good stability over 30 days. EOs' antimicrobial activity was further enhanced in the MEs, with a generalized lowering of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. C. cyminum-ME reached, in most cases, MIC two times lower (0.312%) than the corresponding EO (0.625%) and even eight times lower against S. aureus (0.156 vs. 1.25%). A more remarkable microbicide effect was noted for C. cyminum-ME, with MBC values eight times lower (from 0.312 to 0.625%) than the corresponding EO (from 2.5 to 5%). Overall, MEs resulted in an efficient system for EOs encapsulation, enhancing solubility and lowering concentration to exert antimicrobial efficacy.

18.
Dalton Trans ; 51(35): 13311-13321, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35983757

RESUMEN

We have recently reported a series of half-sandwich ruthenium(II) complexes with curcuminoid ligands showing excellent cytotoxic activities (particularly ionic derivatives containing PTA (PTA = 1,3,5-triaza-7-phosphaadamantane). In the present study, new members of this family of compounds have been prepared with the objective to investigate the effect of a long hydrophobic chain obtained by replacing the OH-groups, present in curcumin and bisdemethoxycurcumin, with the palmitic acid ester. We report the synthesis of ruthenium(II) and osmium(II) p-cymene derivatives containing palmitic acid curcumin ester ligands ((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2-methoxy-4,1-phenylene)dipalmitate (p-curcH) and ((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(4,1-phenylene)dipalmitate (p-bdcurcH). Complexes [M(II)(cym)(p-curc)/(p-bdcurc)(Cl)] 1-4 (M = Ru or Os) are neutral, whereas [M(II)(cym)(p-curc)/(p-bdcurc)(PTA)][SO3CF3] 5-8 are salts obtained when the chloride ligand is replaced by the PTA ligand. Stability studies performed on 1-8 in DMSO-PBS under physiological conditions (pH = 7.4) indicate that the complexes remain intact. The complexes exhibit potent and selective cytotoxic activity against an ovarian carcinoma cell line and its cisplatin-resistant form (A2780 and A2780cis), and non-cancerous human embryonic kidney (HEK293T) cells. To define the structure-activity relationships (SAR), the compounds have been compared with other Ru(II) and Os(II) complexes with curcuminoid ligands previously reported. SAR data reveal that the bisdemethoxycurcumin complexes are generally more active and selective than analogous curcumin-containing complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Compuestos Organometálicos , Neoplasias Ováricas , Rutenio , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Curcumina/química , Curcumina/farmacología , Diarilheptanoides/uso terapéutico , Ésteres , Femenino , Células HEK293 , Humanos , Ligandos , Compuestos Organometálicos/química , Osmio/química , Neoplasias Ováricas/tratamiento farmacológico , Ácido Palmítico/uso terapéutico , Rutenio/química
19.
Plants (Basel) ; 11(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956490

RESUMEN

Patagonia is a geographical area characterized by a wide plant biodiversity. Several native plant species are traditionally used in medicine by the local population and demonstrated to be sources of biologically active compounds. Due to the massive need for green and sustainable pesticides, this study was conducted to evaluate the insecticidal activity of essential oils (EOs) from understudied plants growing in this propitious area. Ciprés (Pilgerodendron uviferum), tepa (Laureliopsis philippiana), canelo (Drimys winteri), and paramela (Adesmia boronioides) EOs were extracted through steam distillation, and their compositions were analyzed through GC−MS analysis. EO contact toxicity against Musca domestica L., Spodoptera littoralis (Boisd.), and Culex quinquefasciatus Say was then evaluated. As a general trend, EOs performed better on housefly males over females. Ciprés EO showed the highest insecticidal efficacy. The LD50(90) values were 68.6 (183.7) and 11.3 (75.1) µg adult−1 on housefly females and males, respectively. All EOs were effective against S. littoralis larvae; LD50 values were 33.2−66.7 µg larva−1, and tepa EO was the most effective in terms of LD90 (i.e., <100 µg larva−1). Canelo, tepa, and paramela EOs were highly effective on C. quinquefasciatus larvae, with LC50 values < 100 µL L−1. Again, tepa EO achieved LD90 < 100 µL L−1. This EO was characterized by safrole (43.1%), linalool (27.9%), and methyl eugenol (6.9%) as major constituents. Overall, Patagonian native plant EOs can represent a valid resource for local stakeholders, to develop effective insecticides for pest and vector management, pending a proper focus on their formulation and nontarget effects.

20.
Plants (Basel) ; 11(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36297745

RESUMEN

Human pathologies, environmental pollution, and resistance phenomena caused by the intensive use of chemical pesticides have shifted the attention of the agrochemical industries towards eco-friendly insecticides and acaricides. Acmella oleracea (L.) R. K. Jansen (jambù) is a plant native to South America, widely distributed and cultivated in many countries due to its numerous pharmacological properties. This review analyzes literature about the plant, its uses, and current knowledge regarding insecticidal and acaricidal activity. Acmella oleracea has proven to be a potential pesticide candidate against several key arthropod pest and vector species. This property is inherent to its essential oil and plant extract, which contain spilanthol, the main representative of N-alkylamides. As a result, there is a scientific basis for the industrial exploitation of jambù in the preparation of green insecticides. However, studies related to its toxicity towards non-target species and those aimed at formulating and developing marketable products are lacking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA