RESUMEN
Patterns of diurnal activity differ substantially between individuals, with early risers and late sleepers being examples of opposite chronotypes. Growing evidence suggests that the late chronotype significantly impacts the risk of developing mood disorders, obesity, diabetes, and other chronic diseases. Despite the vast potential of utilizing chronotype information for precision medicine, those factors that shape chronotypes remain poorly understood. Here, we assessed whether the various chronotypes are associated with different gut microbiome compositions. Using metagenomic sequencing analysis, we established a distinct signature associated with chronotype based on two bacterial genera, Alistipes (elevated in "larks") and Lachnospira (elevated in "owls"). We identified three metabolic pathways associated with the early chronotype, and linked distinct dietary patterns with different chronotypes. Our work demonstrates an association between the gut microbiome and chronotype and may represent the first step towards developing dietary interventions aimed at ameliorating the deleterious health correlates of the late chronotype.
Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Adulto , Femenino , Humanos , Masculino , Metagenoma , Encuestas y Cuestionarios , Adulto JovenRESUMEN
The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides fragilis/enzimología , Enzimas de Restricción-Modificación del ADN/metabolismo , Microbioma Gastrointestinal , Animales , Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Humanos , Ratones , Mutación , TranscriptomaRESUMEN
BACKGROUND: Idiopathic intracranial hypertension syndrome (IIH) is most common among obese women. Weight loss is an important factor in improving papilledema. Over the last decade, growing evidence has identified gut microbiota as a potential factor in the pathophysiology of obesity. Accordingly, we investigated whether the gut microbiome is modified in IIH patients compared with healthy controls, and provide possible new treatment venues. METHODS: Shotgun metagenomic sequencing of the gut microbiome of 25 cases of IIH patients (according to the modified Dandy criteria) and 20 healthy controls. Participants were further stratified according to their body mass index. The total DNA from each sample was extracted using the PureLink Microbiome DNA Purification Kit A29789 (Invitrogen, Thermo Fisher Scientific, US). Library preparation was performed using the Nextera DNA Flex Library Prep Kit. Samples were sequenced on the Illumina Novaseq 6000 device. A list of bacterial species that significantly differed between the IIH patients and healthy controls was produced in addition to species diversity. In addition, patients' cohort alone was analyzed, (excluding the healthy controls), and the effect of acetazolamide treatment on their gut microbiota was analyzed. RESULTS: IIH patients have a lower diversity of bacterial species compared with healthy individuals. These bacteria, that is, Lactobacillus ruminis (L. ruminis) (p<6.95E-08), Atopobium parvulum (p<3.9E-03), Megamonas hypermegale (p<5.61E-03), Ruminococcus gnavus (p<1.29E-02), MEL.A1 (p<3.04E-02), and Streptococcus sp. I-G2 (p<3.04E-02), were previously characterized with beneficial health effects. Moreover, we found that Lactobacillus brevis, a beneficial bacterium as well, is more abundant in acetazolamide treated patients (p<7.07E-06). CONCLUSIONS: Gut microbiota plays a potential role in IIH etiology and therefore, can provide a promising new treatment approach for this disease.
Asunto(s)
Microbioma Gastrointestinal , Papiledema , Seudotumor Cerebral , Acetazolamida , Encéfalo , Femenino , Humanos , ObesidadRESUMEN
BACKGROUND: Carbapenemase-producing Enterobacteriaceae (CPE) infections lead to considerable morbidity and mortality. We assessed the potential of fecal microbiota transplantation (FMT) to eradicate CPE carriage and aimed to explain failure or success through microbiome analyses. METHODS: In this prospective cohort study, all consenting eligible CPE carriers received oral capsulized FMT for 2 days. Primary outcome was CPE eradication at 1 month, defined by 3 consecutive negative rectal swabs, the last also negative for carbapenemase gene by polymerase chain reaction. Comprehensive metagenomics analysis of the intestinal microbiome of donors and recipients before and after FMT was performed. RESULTS: Fifteen CPE carriers received FMT, 13 of whom completed 2 days of treatment. CPE eradication at 1 month was successful in 9/15 and 9/13, respectively. Bacterial communities showed significant changes in both beta and alpha diversity metrics among participants who achieved CPE eradication that were not observed among failures. Post-FMT samples' beta-diversity clustered according to the treatment outcome, both in taxonomy and in function. We observed a significant decrease in beta diversity in participants who received post-FMT antibiotics. Enterobacteriaceae abundance decreased in post-FMT samples of the responders but increased among failures. Functionally, a clear demarcation between responders (who were similar to the donors) and failures was shown, driven by antimicrobial resistance genes. CONCLUSIONS: Our study provides the biological explanation for the effect of FMT against CPE carriage. Decolonization of CPE by FMT is likely mediated by compositional and functional shifts in the microbiome. Thus, FMT might be an efficient strategy for sustained CPE eradication. CLINICAL TRIALS REGISTRATION: NCT03167398.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Infecciones por Enterobacteriaceae/prevención & control , Trasplante de Microbiota Fecal , Heces , Humanos , Metagenómica , Estudios ProspectivosRESUMEN
Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.
Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación , ADNRESUMEN
Lynch syndrome (LS) is a hereditary cancer syndrome caused by autosomal dominant mutations, with high probability of early onset for several cancers, mainly colorectal cancer (CRC). The gut microbiome was shown to be influenced by host genetics and to be altered during cancer development. Therefore, we aimed to determine alterations in gut microbiome compositions of LS patients with and without cancer. We performed fecal microbiome analyses on samples of LS and non-LS members from the Druze ethnoreligious community in Israel, based on both their LS mutation and their cancer history. Our analysis revealed specific bacterial operational taxonomic units (OTUs) overrepresented in LS individuals as well as bacterial OTUs differentiating between the LS individuals with a history of cancer. The identified OTUs align with previous studies either correlating them to pro-inflammatory functions, which can predispose to cancer, or to the cancer itself, and as such, these bacteria can be considered as future therapeutic targets.
Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Israel/epidemiología , Microbioma Gastrointestinal/genética , Mutación , Reparación de la Incompatibilidad de ADNRESUMEN
The gut microbiota is now well known to affect the host's immune system. One way of bacterial communication with host cells is via the secretion of vesicles, small membrane structures containing various cargo. Research on vesicles secreted by Gram-positive gut bacteria, their mechanisms of interaction with the host and their immune-modulatory effects are still relatively scarce. Here we characterized the size, protein content, and immune-modulatory effects of extracellular vesicles (EVs) secreted by a newly sequenced Gram-positive human gut symbiont strain - Bifidobacterium longum AO44. We found that B. longum EVs exert anti-inflammatory effects, inducing IL-10 secretion from both splenocytes and dendritic cells (DC)-CD4+ T cells co-cultures. Furthermore, the EVs protein content showed enrichment in ABC transporters, quorum sensing proteins, and extracellular solute-binding proteins, which were previously shown to have a prominent function in the anti-inflammatory effect of other strains of B. longum. This study underlines the importance of bacterial vesicles in facilitating the gut bacterial immune-modulatory effects on the host and sheds light on bacterial vesicles as future therapeutics.
Asunto(s)
Bifidobacterium longum , Vesículas Extracelulares , Humanos , Fagocitosis , Bacterias , Antiinflamatorios/farmacologíaRESUMEN
Background: Infected diabetic foot ulcers (IDFU) are a major complication of diabetes mellitus. These potentially limb-threatening ulcers are challenging to treat due to impaired wound healing characterizing diabetic patients and the complex microbial environment of these ulcers. Aim: To analyze the microbiome of IDFU in association with clinical outcomes. Methods: Wound biopsies from IDFU were obtained from hospitalized patients and were analyzed using traditional microbiology cultures, 16S rRNA sequencing and metagenomic sequencing. Patients' characteristics, culture-based results and sequencing data were analyzed in association with clinical outcomes. Results: A total of 31 patients were enrolled. Gram-negative bacteria dominated the IDFU samples (79%, 59% and 54% of metagenomics, 16S rRNA and cultures results, respectively, p<0.001). 16S rRNA and metagenomic sequencing detected significantly more anaerobic bacteria, as compared to conventional cultures (59% and 76%, respectively vs. 26% in cultures, p=0.001). Culture-based results showed that Staphylococcus aureus was more prevalent among patients who were treated conservatively (p=0.048). In metagenomic analysis, the Bacteroides genus was more prevalent among patients who underwent amputation (p<0.001). Analysis of metagenomic-based functional data showed that antibiotic resistance genes and genes related to biofilm production and to bacterial virulent factors were more prevalent in IDFU that resulted in amputation (p<0.001). Conclusion: Sequencing tools uncover the complex biodiversity of IDFU and emphasize the high prevalence of anaerobes and Gram-negative bacteria in these ulcers. Furthermore, sequencing results highlight possible associations among certain genera, species, and bacterial functional genes to clinical outcomes.
Asunto(s)
Diabetes Mellitus , Pie Diabético , Microbiota , Pie Diabético/complicaciones , Pie Diabético/microbiología , Humanos , Metagenoma , Metagenómica/métodos , Microbiota/genética , ARN Ribosómico 16S/genéticaRESUMEN
PURPOSE: To simulate the effect of decreasing conduction velocity (Cvel) on average segmental myocardial strain using mathematical modeling. METHODS: The simulation was run using MatLab version 7.4 (The MathWorks, Inc. Natick, Massachusetts). A normal strain-time curve pattern was sampled from a normal human echo study using the 2D strain imaging software (GE Healthcare, Milwaukee, Wisconsin). Contraction was simulated from simultaneous segmental activation (Cvel=∞) through normal activation (Cvel=400cm/sec) to pacing Cvel (100 to 10cm/sec). The simulation generated average segmental strain-time waveforms for each velocity and peak strain as a function of Cvel and time to peak strain as a function of Cvel curves. RESULTS: With decreasing Cvel, average peak segmental strain was found to be decreased and delayed. The following correlation equation represents the correlation betweenpeak strain and Cvel : strain= -20.12+27.65 x e (-0.29 x Cvel). At the highest pacing Cvel (100cm/sec) average peak segmental strain dropped by 10%, at 50cm/sec by 30% and at the lowest pacing Cvel (10cm/sec) peak strain dropped by >90%. Time to peak segmental strain was minimally longer with decreasing Cvel down to 70cm/sec (pacing velocity range). Further decreased velocity dramatically increased time to peak strain of the simulated segment. CONCLUSIONS: The simulation yielded a predictive correlation between slower conduction velocities and decreased and delayed segmental strain.
RESUMEN
Although bacteriophages are highly abundant in the gut microbiome, little is known about their potential effects on gut bacteria. In this issue of Cell Host & Microbe, Hryckowian et al. (2020) and Fujimoto et al. (2020) combined metagenomic analysis and experiments to study phage-bacteria associations in order to develop future research tools and therapies.