RESUMEN
Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.
RESUMEN
It has recently been demonstrated that aqueous lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium chloride (LiCl) solutions can form stable liquid-liquid biphasic systems when both electrolyte phases have sufficiently high concentrations. In this work, we combine molecular dynamics simulations and experimental analysis to investigate what drives the formation of the interface and how the interfacial molecular structure correlates with its thermodynamic stability. We observe that at the liquid-vapour interface, TFSI- anions exhibit surfactant-like properties, leading to a reduction in surface tension and an increase in interfacial thickness. In contrast, the interfacial stability of the LiTFSI-LiCl biphasic systems increases with the concentration of both salts, as evidenced by the increasing surface tension and decreasing interfacial thickness. The opposing effects that the ionic concentration has on the thermodynamic stability of the different interfaces are linked to the anions' interfacial adsorption/desorption, which in turn affects the number and strength of water-water hydrogen bonds, the interfacial molecular structure and the diffusion of cations across the interface. Finally, calculations and experiments indicate that the liquid-liquid separation is driven primarily by the concentration of LiCl, and is the result of a 'salting out' effect.
RESUMEN
Plasticisers are small organic molecules routinely added to polymer composites that modify the processability of the compounds by adsorbing on the filler's surface or dispersing into the polymer matrix. Here using a simple yet chemically specific coarse-grained model, we demonstrate that the filler surface coverage and the degree of dispersion into the polymer matrix can be tuned without modifying the chemistry of the plasticisers but only by varying their conformational flexibility. We show that when the adsorption mechanism and clustering into the bulk are entropically driven as in this work, this is a general phenomenon independent on the polymer chemistry and its molecular weight. Our findings suggest a simple practical design rule that requires only minor modifications of the plasticisers' chemistry to achieve maximum adsorption onto the filler surface or dispersion into the polymer matrix.
RESUMEN
Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al(OiPr)3-SiO2, Al(OiPr)3-TiO2 and Al(OiPr)3-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al(OiPr)3 catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy.
RESUMEN
We present the coupling of two frameworks-the pseudo-open boundary simulation method known as constant potential molecular dynamics simulations (CµMD), combined with quantum mechanics/molecular dynamics (QMMD) calculations-to describe the properties of graphene electrodes in contact with electrolytes. The resulting CµQMMD model was then applied to three ionic solutions (LiCl, NaCl, and KCl in water) at bulk solution concentrations ranging from 0.5 M to 6 M in contact with a charged graphene electrode. The new approach we are describing here provides a simulation protocol to control the concentration of electrolyte solutions while including the effects of a fully polarizable electrode surface. Thanks to this coupling, we are able to accurately model both the electrode and solution side of the double layer and provide a thorough analysis of the properties of electrolytes at charged interfaces, such as the screening ability of the electrolyte and the electrostatic potential profile. We also report the calculation of the integral electrochemical double layer capacitance in the whole range of concentrations analyzed for each ionic species, while the quantum mechanical simulations provide access to the differential and integral quantum capacitance. We highlight how subtle features, such as the adsorption of potassium graphene or the tendency of the ions to form clusters contribute to the ability of graphene to store charge, and suggest implications for desalination.
RESUMEN
The homogeneous covering of amphiphillic polymer molecules onto metallic surfaces is of great importance for corrosion inhibitor applications. Lyophillic side chains grafted onto a lyophobic backbone act as anchors that allow the molecule to absorb at the metallic surface preventing the exposure with the solvent. Coarse-grained simulations are used to study the sorption and conformation behaviour of amphiphillic grafted polymers for corrosion inhibition. The backbone insolubility is found to play a key role in the sorption and conformation behaviour in the dilute limit. For finite concentrations, moderate backbone solubility and moderate molecule concentrations achieve optimal surface coverage, while highly a lyophobic backbone leads to bulk-like structures as a consequence of aggregation.
Asunto(s)
Polímeros , Adsorción , Corrosión , Conformación Molecular , Polímeros/química , Solventes/químicaRESUMEN
Dissipative Particle Dynamics (DPD) is a powerful mesoscopic modelling technique that is routinely used to predict complex fluid morphology and structural properties. While its ability to quickly scan the conformational space is well known, it is unclear if DPD can correctly calculate the viscosity of complex fluids. In this work, we estimate the viscosity of several unentangled polymer solutions using both the Einstein and Green-Kubo formulas. For this purpose, an Einstein relation is derived analogous to the revised Green-Kubo formula suggested by Jung and Schmid, J. Chem. Phys., 2016, 144, 204104. We show that the DPD simulations reproduce the dynamical behaviour predicted by the theory irrespectively of the values of the conservative and friction parameters used and estimate a Schmidt number compatible to that of a fluid system. Moreover, we observe that the Einstein method requires shorter trajectories to achieve the same statistical accuracy as the Green-Kubo formula. This work shows that DPD can confidently be used to calculate the viscosity of complex fluids and that the statistical accuracy of short trajectories can be improved by using our revised Einstein formula.
RESUMEN
Decoding behavioral aspects associated with the water molecules in confined spaces such as an interlayer space of two-dimensional nanosheets is key for the fundamental understanding of water-matter interactions and identifying unexpected phenomena of water molecules in chemistry and physics. Although numerous studies have been conducted on the behavior of water molecules in confined spaces, their reach stops at the properties of the planar ice-like formation, where van der Waals interactions are the predominant interactions and many questions on the confined space such as the possibility of electron exchange and excitation state remain unsettled. We used density functional theory and reactive molecular dynamics to reveal orbital overlap and induction bonding between water molecules and graphene sheets under much less pressure than graphene fractures. Our study demonstrates high amounts of charge being transferred between water and the graphene sheets, as the interlayer space becomes smaller. As a result, the inner face of the graphene nanosheets is functionalized with hydroxyl and epoxy functional groups while released hydrogen in the form of protons either stays still or traverses a short distance inside the confined space via the Grotthuss mechanism. We found signatures of a new hydrolysis mechanism in the water molecules, i.e. mechanical hydrolysis, presumably responsible for relieving water from extremely confined conditions. This phenomenon where water reacts under extreme confinement by disintegration rather than forming ice-like structures is observed for the first time, illustrating the prospect of treating ultrafine porous nanostructures as a driver for water splitting and material functionalization, potentially impacting the modern design of nanofilters, nanochannels, nano-capacitators, sensors, and so on.
RESUMEN
The scission energy is the difference in free energy between two hemispherical caps and the cylindrical region of a wormlike micelle. This energy difference determines the logarithm of the average micelle length, which affects several macroscopic properties such as the viscosity of viscoelastic fluids. Here we use a recently published method by Wang et al. ( Langmuir, 2018, 34, 1564-1573) to directly calculate the scission energy of micelles composed of monodisperse sodium lauryl ether sulfate (SLESnEO), an anionic surfactant. Utilizing dissipative particle dynamics (DPD), we perform a systematic study varying the number of ethoxyl groups (n) and salt concentration. The scission energy increases with increasing salt concentration, indicating that the formation of longer micelles is favored. We attribute this to the increased charge screening that reduces the repulsion between head groups. However, the scission energy decreases with increasing number of ethoxyl groups as the flexibility of the head group increases and the sodium ion becomes less tightly bound to the head group. We then extend the analysis to look at the effect of a common cosurfactant, cocamidopropyl betaine (CAPB), and find that its addition stabilizes wormlike micelles at a lower salt concentration.
RESUMEN
Aqueous solutions of tri-block co-polymer surfactants are able to aggregate into a rich variety of microstructures, which can exhibit different rheological behaviors. In this work, we study the diversity of structures detected in aqueous solutions of Pluronic L64 at various concentrations and temperatures by experimental rheometry and dissipative particle dynamics (DPD) simulations. Mixtures of Pluronic L64 in water (ranging from 0 to 90 wt% Pluronic L64) have been studied in both linear and non-linear regimes by oscillatory and steady shear flow. The measurements allowed for the determination of a complete rheological phase diagram of the Pluronic L64-water system. The linear and non-linear regimes have been compared to equilibrium and non-equilibrium DPD bulk simulations of similar systems obtained by using the software LAMMPS. The molecular results are capable of reproducing the equilibrium structures, which are in complete agreement with the ones predicted through experimental linear rheology. The simulations also depict micellar microstructures after long time periods when a strong flow is applied. These structures are directly compared, from a qualitative point of view, with the corresponding experimental results and differences between the equilibrium and non-equilibrium phase diagrams are highlighted, proving the capability of detecting morphological changes caused by deformation in both experiments and DPD simulations. The effect of temperature on the rheology of the systems has been eventually investigated and compared with the already existing non-rheological phase diagram.
RESUMEN
The phase behaviour as a function of temperature is explored for pure phospholipid (DPPC) and hybrid lipid-polymer (DPPC/Pluronic L64) bilayers with the aid of atomistic MD simulations. The range of the fixed-temperature simulations includes temperatures below and above the known melting temperature (Tm) for DPPC membranes. For the pure lipid bilayer, the main phase transition is discontinuous, as verified by the abrupt changes observed in the membrane structure, elasticity and the lipid diffusivity near the critical temperature Tm, which lies in the region 298.15-303.15 K. A pre-transition step is detected at 298.15 K which has been identified as the ripple phase (Pß'), where ordered and disordered lipids coexist, causing thickness fluctuations. In the ordered gel phase, the positional ordering as assessed by the lipid radial distribution functions is long-range and some degree of hexagonal packing is measured. The hybrid bilayers on the other hand, transform from a more ordered to a disordered phase in a continuous manner, without finite jumps in their properties. No signs of the ripple phase are identified and the ordered phase exhibits very limited hexagonal packing and some positional ordering that decays fast. The effect of the inserted polymers in the two phases is reversed; at low temperatures, they render the membrane thinner, less cohesive and less ordered compared to the pure one, with the lipids assuming faster diffusion rates, whereas at high temperatures, the polymer interaction with the lipids acts reducing their diffusivity, but also increasing the lipid tail ordering and the membrane stiffness. The ability of the amphiphilic L64 copolymers to change the nature of the main phase transition of lipid membranes and their properties both in the ordered and the disordered phase is of vital importance for the prediction of both the efficacy of hybrid lipid/polymer nanoparticles as drug delivery vehicles as well as their potential adverse implications during interactions with healthy cell membranes.
Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Moleculares , Fosfolípidos/química , Poloxámero/química , Cristalización , Difusión , Cinética , Membranas Artificiales , Modelos Químicos , Transición de Fase , Termodinámica , Temperatura de TransiciónRESUMEN
Experiments of nanoconfined water between graphene sheets at high pressure suggest that it forms a square ice structure (Algara-Siller et al., Nature, 2015, 519, 443). Molecular dynamics (MD) simulations have been used to attempt to recreate this structure, but there have been discrepancies in the structure formed by the confined water depending on the simulation set-up that was employed and particularly on the choice of water model. Here, using classical molecular dynamics simulations, we have systematically investigated the effect that three different water models (SPC/E, TIP4P/2005 and TIP5P) have on the structure of water confined between two rigid graphene sheets with a 0.9 nm separation. We show that the TIP4P/2005 and the TIP5P water models form a hexagonal AA-stacked structure, whereas the SPC/E model forms a rhombic AB-stacked structure. Our work demonstrates that the formation of these structures is driven by differences in the strength of hydrogen bonds predicted by the three water models, and that the nature of the graphene/water interaction only mildly affects the phase diagram. Considering the available experimental data and first-principle simulations we conclude that, among the models tested, the TIP4P/2005 and TIP5P force fields are for now the most reliable when simulating water under confinement. © 2018 Wiley Periodicals, Inc.
RESUMEN
In this study, the phase diagram of Pluronic L64 and water is simulated via dissipative particle dynamics (DPD). The peculiar structures that form when the concentration varies from dilute to dense (i.e., spherical and rod-like micelles, hexagonal and lamellar phases, as well as reverse micelles) are recognized, and predictions are found to be in good agreement with experiments. A novel clustering algorithm is used to identify the structures formed, characterize them in terms of radius of gyration and aggregation number and cluster mass distributions. Non-equilibrium simulations are also performed, in order to predict how structures are affected by shear, both via qualitative and quantitative analyses. Despite the well-known scaling problem that results in unrealistic shear rates in real units, results show that non-Newtonian behaviors can be predicted by DPD and associated with variations of the observed microstructures.
RESUMEN
We employ atomistic molecular dynamics simulations to investigate the effect that the incorporation of the nonionic amphiphilic copolymer known as Pluronic L64 has on the mechanical stability of a DPPC membrane. The simulations reveal that the incorporation of the polymer chains leads to membranes that can sustain increasing mechanical stresses. Analysis of mechanical, structural, and dynamic properties of the membrane shows that the polymer chains interact strongly with the lipids in the vicinity, restraining their mobility and imparting better mechanical stability to the membrane. The hybrid membranes under tension remain thicker, more ordered, and stiffer in comparison to their lipid analogues. Trans-bilayer lipid movements (flip-flop) are observed and appear to be triggered by the presence of the polymer chains. A careful analysis of the pore formation under high tensions reveals two distinctive mechanisms that depend on the distribution of the hydrophilic polymer blocks in the bilayer. Finally, the rate of growth of the formed membrane defects is slowed down in the presence of polymers. These findings show that Pluronic block copolymers could be exploited for the formation of optimized hybrid nanodevices with controlled elastic and dynamic properties.
Asunto(s)
Estrés Mecánico , Membrana Dobles de Lípidos , Membranas , Poloxámero , PolímerosRESUMEN
The effective removal of radioactive technetium ((99)Tc) from contaminated water is of enormous importance from an environmental and public health perspective, yet many current methodologies are highly ineffective. In this work, however, we demonstrate that graphene oxide membranes may remove (99)Tc, present in the form of pertechnetate (TcO4(-)), from water with a high degree of selectivity, suggesting they provide a cost-effective and efficient means of achieving (99)Tc decontamination. The results were obtained by quantifying and comparing the free energy changes associated with the entry of the ions into the membrane capillaries (ΔFperm), using molecular dynamics simulations. Initially, three capillary widths were investigated (0.35, 0.68, and 1.02 nm). In each case, the entry of TcO4(-) from aqueous solution into the capillary is associated with a decrease in free energy, unlike the other anions (SO4(2-), I(-), and Cl(-)) investigated. For example, in the model with a capillary width of 0.68 nm, ΔFperm(TcO4(-)) = -6.3 kJ mol(-1), compared to ΔFperm(SO4(2-)) = +22.4 kJ mol(-1). We suggest an optimum capillary width (0.48 nm) and show that a capillary with this width results in a difference between ΔFperm(TcO4(-)) and ΔFperm(SO4(2-)) of 89 kJ mol(-1). The observed preference for TcO4(-) is due to its weakly hydrating nature, reflected in its low experimental hydration free energy.
Asunto(s)
Membranas Artificiales , Tecnecio/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Radiactivos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cloruros/química , Descontaminación/instrumentación , Descontaminación/métodos , Grafito , Simulación de Dinámica Molecular , Óxidos , Pertecnetato de Sodio Tc 99m/aislamiento & purificación , Sulfatos/química , Purificación del Agua/instrumentaciónRESUMEN
Performing molecular dynamics simulations on model systems we study the structural changes and thermodynamic stability of polymers of varying topology (linear and star-shaped) at interface between two liquids. We find that homopolymers are attracted to the interface in both good and poor solvent conditions showing that they are surface active molecules even though not amphiphilic. In most cases changing polymer topology had only a minor effect on the desorption free energy. A noticeable dependence on polymer topology is only seen for relatively high molecular weight polymers at interface between two good solvents. Examining separately the enthalpic and entropic components of the desorption free energy suggests that its largest contribution is the decrease in the enthalpic part of interfacial free energy caused by the adsorption of the polymer at the interface. Finally we propose a simple method to qualitatively predict the trend of the interfacial free energy as a function of the polymer molecular weight.
RESUMEN
Atomistic molecular dynamic simulations have been performed for the non-ionic chromonic liquid crystal 2,3,6,7,10,11-hexa-(1,4,7-trioxa-octyl)-triphenylene (TP6EO2M) in aqueous solution. TP6EO2M molecules consist of a central poly-aromatic core (a triphenylene ring) functionalized by six hydrophilic ethyleneoxy (EO) chains, and have a strong tendency to aggregate face-to-face into stacks even in very dilute solution. We have studied self-assembly of the molecules in the low concentration range corresponding to an isotropic solution of aggregates, using two force fields GAFF and OPLS. Our results reveal that the GAFF force field, even though it was successfully used previously for modelling of ionic chromonics, overestimates the attraction of TP6EO2M molecules in water. This results in an aggregation free energy which is too high, a reduced hydration of EO chains and, therefore, molecular self-assembly into compact disordered clusters instead of stacks. In contrast, use of the OPLS force field, leads to self-assembly into ordered stacks in agreement with earlier experimental studies of triphenylene-based chromonics. The free energy of association follows a "quasi-isodesmic" pattern, where the binding free energy of two molecules to form a dimer is of the order of 2.5 RT larger than the corresponding energy of addition of a molecule into a stack. The obtained value for the binding free energy, ΔG=-12 RT, is found to be in line with the published values for typical ionic chromonics (-7 to -12 RT), and agrees reasonably well with the experimental results for this system. The calculated interlayer distance between the molecules in a stack is 0.37 nm, which is at the top of the range found for typical chromonics (0.33-0.37 nm). We suggest that the relatively large layer spacing can be attributed to the repulsion between EO side chains.
RESUMEN
Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This work outlines the development of a new potential model for TcO4(-) and competing SO4(2-), optimized using their hydration properties, such as the Gibbs hydration free energy (calculated using Bennett's acceptance ratio method). The findings show that the TcO4(-) oxyanion has a very low hydration free energy (-202 kJ mol(-1)) compared to other anions (Cl(-), I(-), SO4(2-)) leading to fast water exchange dynamics and explaining its observed high mobility in the aqueous environment. Its hydrated structure, investigated using ion-water radial distribution functions, shows that it is unique amongst the other anions in that it does not possess well-defined hydration shells. Since contaminants and ubiquitous species in the aqueous environment are often present as tetrahedral oxyanions, it is proposed that the approach could easily be extended to a whole host of other species.