Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 209: 111947, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32652466

RESUMEN

Actin cytoskeleton remodeling is the major motor of cytoskeleton dynamics driving tumor cell adhesion, migration and invasion. The typical RhoA, RhoB and RhoC GTPases are the main regulators of actin cytoskeleton dynamics. The C3 exoenzyme transferase from Clostridium botulinum is a toxin that causes the specific ADP-ribosylation of Rho-like proteins, leading to its inactivation. Here, we examine what effects the Rho GTPase inhibition and the consequent actin cytoskeleton instability would have on the emergence of DNA damage and on the recovery of genomic stability of malignant melanoma cells, as well as on their survival. Therefore, the MeWo cell line, here assumed as a melanoma cell line model for the expression of genes involved in the regulation of the actin cytoskeleton, was transiently transfected with the C3 toxin and subsequently exposed to UV-radiation. Phalloidin staining of the stress fibers revealed that actin cytoskeleton integrity was strongly disrupted by the C3 toxin in association with reduced melanoma cells survival, and further enhanced the deleterious effects of UV light. MeWo cells with actin cytoskeleton previously perturbed by the C3 toxin still showed higher levels and accumulation of UV-damaged DNA (strand breaks and cyclobutane pyrimidine dimers, CPDs). The interplay between reduced cell survival and impaired DNA repair upon actin cytoskeleton disruption can be explained by constitutive ERK1/2 activation and an inefficient phosphorylation of DDR proteins (γH2AX, CHK1 and p53) caused by C3 toxin treatment. Altogether, these results support the general idea that actin network help to protect the genome of human cells from damage caused by UV light through unknown molecular mechanisms that tie the cytoskeleton to processes of genomic stability maintenance.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Botulínicas/metabolismo , Supervivencia Celular/efectos de la radiación , Inestabilidad Genómica , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Rayos Ultravioleta , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Humanos , Melanoma/genética , Melanoma/patología , Mutación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA