Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129618

RESUMEN

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Asunto(s)
Colorantes , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
2.
Nat Rev Neurosci ; 21(2): 80-92, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31911627

RESUMEN

Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Animales , Nivel de Alerta/fisiología , Atención/fisiología , Humanos , Aprendizaje/fisiología , Percepción/fisiología
3.
Cell ; 142(2): 189-93, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655460

RESUMEN

Interneurons in the neocortex of the brain are small, locally projecting inhibitory GABAergic cells with a broad array of anatomical and physiological properties. The diversity of interneurons is believed to be crucial for regulating myriad operations in the neocortex. Here, we describe current theories about how interneuron diversity may support distinct neocortical processes that underlie perception.


Asunto(s)
Interneuronas/fisiología , Neocórtex/citología , Animales , Humanos , Red Nerviosa
4.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38365273

RESUMEN

Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Ratones , Animales , Adolescente , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Corteza Cerebral/diagnóstico por imagen , Cognición
5.
Mol Psychiatry ; 28(7): 3133-3143, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37069344

RESUMEN

GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.


Asunto(s)
Células Piramidales , Transducción de Señal , Animales , Ratones , Interneuronas/metabolismo , Neurregulina-1/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Receptor ErbB-4/genética
6.
Nat Methods ; 17(1): 107-113, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686040

RESUMEN

Spontaneous and sensory-evoked activity propagates across varying spatial scales in the mammalian cortex, but technical challenges have limited conceptual links between the function of local neuronal circuits and brain-wide network dynamics. We present a method for simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield calcium imaging of the entire cortical mantle in awake mice. Our multi-scale approach involves a microscope with an orthogonal axis design where the mesoscopic objective is oriented above the brain and the two-photon objective is oriented horizontally, with imaging performed through a microprism. We also introduce a viral transduction method for robust and widespread gene delivery in the mouse brain. These approaches allow us to identify the behavioral state-dependent functional connectivity of pyramidal neurons and vasoactive intestinal peptide-expressing interneurons with long-range cortical networks. Our imaging system provides a powerful strategy for investigating cortical architecture across a wide range of spatial scales.


Asunto(s)
Encéfalo/fisiología , Calcio/metabolismo , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Neuroimagen/métodos , Neuronas/fisiología , Fotones , Animales , Conducta Animal , Encéfalo/citología , Corteza Cerebral/citología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Neuronas/citología , Células Piramidales/citología , Células Piramidales/fisiología , Péptido Intestinal Vasoactivo/metabolismo
7.
Nat Methods ; 17(12): 1262-1271, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33139894

RESUMEN

Achieving a comprehensive understanding of brain function requires multiple imaging modalities with complementary strengths. We present an approach for concurrent widefield optical and functional magnetic resonance imaging. By merging these modalities, we can simultaneously acquire whole-brain blood-oxygen-level-dependent (BOLD) and whole-cortex calcium-sensitive fluorescent measures of brain activity. In a transgenic murine model, we show that calcium predicts the BOLD signal, using a model that optimizes a gamma-variant transfer function. We find consistent predictions across the cortex, which are best at low frequency (0.009-0.08 Hz). Furthermore, we show that the relationship between modality connectivity strengths varies by region. Our approach links cell-type-specific optical measurements of activity to the most widely used method for assessing human brain function.


Asunto(s)
Mapeo Encefálico/métodos , Proteínas de Unión al Calcio/metabolismo , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Análisis de los Gases de la Sangre , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Oxígeno/análisis
8.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33431633

RESUMEN

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Humanos , Lógica
9.
Cereb Cortex ; 30(5): 3074-3086, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31800015

RESUMEN

Recent work suggests an important role for cortical-subcortical networks in seizure-related loss of consciousness. Temporal lobe seizures disrupt subcortical arousal systems, which may lead to depressed cortical function and loss of consciousness. Extracellular recordings show ictal neocortical slow waves at about 1 Hz, but it is not known whether these simply represent seizure propagation or alternatively deep sleep-like activity, which should include cortical neuronal Up and Down states. In this study, using in vivo whole-cell recordings in a rat model of focal limbic seizures, we directly examine the electrophysiological properties of cortical neurons during seizures and deep anesthesia. We found that during seizures, the membrane potential of frontal cortical secondary motor cortex layer 5 neurons fluctuates between Up and Down states, with decreased input resistance and increased firing rate in Up states when compared to Down states. Importantly, Up and Down states in seizures are not significantly different from those in deep anesthesia, in terms of membrane potential, oscillation frequency, firing rate, and input resistance. By demonstrating these fundamental similarities in cortical electrophysiology between deep anesthesia and seizures, our results support the idea that a state of decreased cortical arousal may contribute to mechanisms of loss of consciousness during seizures.


Asunto(s)
Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Animales , Electrodos Implantados , Femenino , Ratas , Ratas Sprague-Dawley
11.
Cereb Cortex ; 28(10): 3399-3413, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968898

RESUMEN

The GABAergic system is regulated by the brain-derived neurotrophic factor (BDNF)/Tropomyosin-related kinase B (TrkB) pathway, but the cell-intrinsic role of TrkB signaling in parvalbumin cortical interneuron development and function is unclear. We performed conditional ablation of the TrkB receptor in parvalbumin-expressing (PV) interneurons to study whether postnatal loss of TrkB in parvalbumin cells affects their survival, connectivity, spontaneous and evoked neuronal activity and behavior. Using in vivo recordings of local field potentials, we found reduced gamma oscillations in the sensory cortex of PVcre+; TrkBF/F conditional knockout mice (TrkB cKO), along with increased firing of putative excitatory neurons. There was a significant downregulation in parvalbumin neuron number in cerebral and cerebellar cortices of TrkB cKO mice. In addition, inhibitory synaptic connections between basket cells and pyramidal neurons were profoundly reduced in the neocortex of TrkB cKO mice and there was a loss of cortical volume. TrkB cKO mice also showed profound hyperactivity, stereotypies, motor deficits and learning/memory defects. Our findings demonstrate that the targeting and/or synapse formation of PV-expressing basket cells with principal excitatory neurons require TrkB signaling in parvalbumin cells. Disruption of this signaling has major consequences for parvalbumin interneuron connectivity, network dynamics, cognitive and motor behavior.


Asunto(s)
Conducta Animal , Corteza Cerebral/citología , Corteza Cerebral/fisiopatología , Interneuronas , Glicoproteínas de Membrana/genética , Neuronas , Proteínas Tirosina Quinasas/genética , Animales , Fenómenos Electrofisiológicos/genética , Potenciales Evocados/fisiología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/psicología , Glicoproteínas de Membrana/deficiencia , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Movimiento/genética , Trastornos del Movimiento/psicología , Neocórtex/citología , Parvalbúminas/biosíntesis , Parvalbúminas/genética , Proteínas Tirosina Quinasas/deficiencia , Células Piramidales , Análisis de Supervivencia
12.
J Neurosci ; 37(45): 10826-10834, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118211

RESUMEN

A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.


Asunto(s)
Movimiento/fisiología , Sensación/fisiología , Atención/fisiología , Cognición/fisiología , Humanos , Locomoción/fisiología
13.
J Neurosci ; 36(41): 10496-10504, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733601

RESUMEN

γ oscillations (20-80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex. Although these dynamics present a challenge to interpreting the functional role of γ oscillations, these patterns of activity emerge from synaptic interactions among excitatory and inhibitory neurons and thus provide important insight into local circuit operations.


Asunto(s)
Encéfalo/fisiología , Ritmo Gamma/fisiología , Potenciales de Acción/fisiología , Animales , Atención/fisiología , Corteza Cerebral/fisiología , Hipocampo/fisiología , Humanos , Inhibición Neural/fisiología , Vías Nerviosas/fisiología
14.
Annu Rev Biomed Eng ; 16: 103-29, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25014785

RESUMEN

Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals.


Asunto(s)
Ingeniería Biomédica/métodos , Optogenética/métodos , Animales , Encéfalo/fisiología , Electrodos , Electrofisiología/métodos , Humanos , Luz , Ratones , Neuronas Motoras/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Neurociencias , Óptica y Fotónica , Fotones , Ratas , Silicio/química
15.
Epilepsia ; 56(12): e198-202, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26530287

RESUMEN

Focal temporal lobe seizures often cause impaired cortical function and loss of consciousness. Recent work suggests that the mechanism for depressed cortical function during focal seizures may depend on decreased subcortical cholinergic arousal, which leads to a sleep-like state of cortical slow-wave activity. To test this hypothesis, we sought to directly activate subcortical cholinergic neurons during focal limbic seizures to determine the effects on cortical function. Here we used an optogenetic approach to selectively stimulate cholinergic brainstem neurons in the pedunculopontine tegmental nucleus during focal limbic seizures induced in a lightly anesthetized rat model. We found an increase in cortical gamma activity and a decrease in delta activity in response to cholinergic stimulation. These findings support the mechanistic role of reduced subcortical cholinergic arousal in causing cortical dysfunction during seizures. Through further work, electrical or optogenetic stimulation of subcortical arousal networks may ultimately lead to new treatments aimed at preventing cortical dysfunction during seizures.


Asunto(s)
Tronco Encefálico/fisiopatología , Corteza Cerebral/fisiopatología , Neuronas Colinérgicas/fisiología , Lóbulo Límbico/fisiopatología , Optogenética/métodos , Convulsiones/fisiopatología , Animales , Channelrhodopsins , Modelos Animales de Enfermedad , Femenino , Masculino , Núcleo Tegmental Pedunculopontino/fisiopatología , Estimulación Luminosa , Ratas , Ratas Long-Evans
16.
Nature ; 459(7247): 663-7, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19396156

RESUMEN

Cortical gamma oscillations (20-80 Hz) predict increases in focused attention, and failure in gamma regulation is a hallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons at varied frequencies (8-200 Hz) selectively amplifies gamma oscillations. In contrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.


Asunto(s)
Interneuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Animales , Chlamydomonas reinhardtii , Electrofisiología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Ratones , Estimulación Luminosa , Células Piramidales/fisiología , Rodopsina/genética , Rodopsina/metabolismo
17.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496673

RESUMEN

GABAergic inhibition is critical to the proper development of neocortical circuits. However, GABAergic interneurons are highly diverse and the developmental roles of distinct inhibitory subpopulations remain largely unclear. Dendrite-targeting, somatostatin-expressing interneurons (SST-INs) in the mature cortex regulate synaptic integration and plasticity in excitatory pyramidal neurons (PNs) and exhibit unique feature selectivity. Relatively little is known about early postnatal SST-IN activity or impact on surrounding local circuits. We examined juvenile SST-INs and PNs in mouse primary visual cortex. PNs exhibited stable visual responses and feature selectivity from eye opening onwards. In contrast, SST-INs developed visual responses and feature selectivity during the third postnatal week in parallel with a rapid increase in excitatory synaptic innervation. SST-INs largely exerted a multiplicative effect on nearby PN visual responses at all ages, but this impact increased over time. Our results identify a developmental window for the emergence of an inhibitory circuit mechanism for normalization.

18.
Nat Neurosci ; 27(1): 148-158, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036743

RESUMEN

Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals. Here, we used wide-field mesoscopic calcium imaging to monitor cortical dynamics in awake mice and developed an approach to quantify rapidly time-varying functional connectivity. We show that spontaneous behaviors are represented by fast changes in both the magnitude and correlational structure of cortical network activity. Combining mesoscopic imaging with simultaneous cellular-resolution two-photon microscopy demonstrated that correlations among neighboring neurons and between local and large-scale networks also encode behavior. Finally, the dynamic functional connectivity of mesoscale signals revealed subnetworks not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide new insights into how behavioral information is represented across the neocortex and demonstrate an analytical framework for investigating time-varying functional connectivity in neural networks.


Asunto(s)
Neocórtex , Neuronas , Ratones , Animales , Neuronas/fisiología , Imagen por Resonancia Magnética , Vigilia , Neocórtex/diagnóstico por imagen , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología
19.
Neuron ; 111(3): 297-299, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731427

RESUMEN

Visually evoked synchrony in the primary visual cortex has proven to be a robust model for examining circuit interactions. In this issue of Neuron, Veit et al.1 highlight a previously unappreciated role for VIP interneurons in regulating local and long-range patterns of coordinated neural activity.


Asunto(s)
Corteza Visual , Corteza Visual/fisiología , Interneuronas/fisiología , Neuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
Front Syst Neurosci ; 17: 1217170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719024

RESUMEN

Cognitive and behavioral processes are often accompanied by changes within well-defined frequency bands of the local field potential (LFP i.e., the voltage induced by neuronal activity). These changes are detectable in the frequency domain using the Fourier transform and are often interpreted as neuronal oscillations. However, aside some well-known exceptions, the processes underlying such changes are difficult to track in time, making their oscillatory nature hard to verify. In addition, many non-periodic neural processes can also have spectra that emphasize specific frequencies. Thus, the notion that spectral changes reflect oscillations is likely too restrictive. In this study, we use a simple yet versatile framework to understand the frequency spectra of neural recordings. Using simulations, we derive the Fourier spectra of periodic, quasi-periodic and non-periodic neural processes having diverse waveforms, illustrating how these attributes shape their spectral signatures. We then show how neural processes sum their energy in the local field potential in simulated and real-world recording scenarios. We find that the spectral power of neural processes is essentially determined by two aspects: (1) the distribution of neural events in time and (2) the waveform of the voltage induced by single neural events. Taken together, this work guides the interpretation of the Fourier spectrum of neural recordings and indicates that power increases in specific frequency bands do not necessarily reflect periodic neural activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA