Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 382(2): 555-66, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23920117

RESUMEN

Translating the developmental program encoded in the genome into cellular and morphogenetic functions requires the deployment of elaborate gene regulatory networks (GRNs). GRNs are especially crucial at the onset of organ development where a few regulatory signals establish the different programs required for tissue organization. In the renal system primordium (the pro/mesonephros), important regulators have been identified but their hierarchical and regulatory organization is still elusive. Here, we have performed a detailed analysis of the GRN underlying mouse pro/mesonephros development. We find that a core regulatory subcircuit composed of Pax2/8, Gata3 and Lim1 turns on a deeper layer of transcriptional regulators while activating effector genes responsible for cell signaling and tissue organization. Among the genes directly affected by the core components are the key developmental molecules Nephronectin (Npnt) and Plac8. Hence, the pro/mesonephros GRN links together several essential genes regulating tissue morphogenesis. This renal GRN sheds new light on the disease group Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in that gene mutations are expected to generate different phenotypic outcomes as a consequence of regulatory network deficiencies rather than threshold effects from single genes.


Asunto(s)
Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas con Homeodominio LIM/genética , Mesonefro/embriología , Factor de Transcripción PAX2/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción/genética , Animales , Línea Celular , Riñón/anomalías , Mesonefro/metabolismo , Ratones , Morfogénesis/genética , Factor de Transcripción PAX8
2.
Neuron ; 94(4): 790-799.e3, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28434801

RESUMEN

Netrin1 has been proposed to act from the floor plate (FP) as a long-range diffusible chemoattractant for commissural axons in the embryonic spinal cord. However, netrin1 mRNA and protein are also present in neural progenitors within the ventricular zone (VZ), raising the question of which source of netrin1 promotes ventrally directed axon growth. Here, we use genetic approaches in mice to selectively remove netrin from different regions of the spinal cord. Our analyses show that the FP is not the source of netrin1 directing axons to the ventral midline, while local VZ-supplied netrin1 is required for this step. Furthermore, rather than being present in a gradient, netrin1 protein accumulates on the pial surface adjacent to the path of commissural axon extension. Thus, netrin1 does not act as a long-range secreted chemoattractant for commissural spinal axons but instead promotes ventrally directed axon outgrowth by haptotaxis, i.e., directed growth along an adhesive surface.


Asunto(s)
Orientación del Axón/genética , Axones/metabolismo , Factores de Crecimiento Nervioso/genética , Células-Madre Neurales/metabolismo , Médula Espinal/embriología , Proteínas Supresoras de Tumor/genética , Animales , Axones/ultraestructura , Factores Quimiotácticos/genética , Factores Quimiotácticos/metabolismo , Imagenología Tridimensional , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Factores de Crecimiento Nervioso/metabolismo , Netrina-1 , Neurogénesis/genética , ARN Mensajero/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/metabolismo
3.
Dev Cell ; 31(1): 34-47, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25263791

RESUMEN

During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Inmunoglobulina G/metabolismo , Meduloblastoma/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Proliferación Celular , Neoplasias Cerebelosas/patología , Ciclina D1/metabolismo , Daño del ADN , Humanos , Inmunoglobulina G/genética , Meduloblastoma/patología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA