Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 131(5): 1099-1110, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29397403

RESUMEN

KEY MESSAGE: We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation. Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point deletion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to Brazilian conditions.


Asunto(s)
Genes de Plantas , Glycine max/genética , Ácido Linoleico/química , Aceite de Soja/química , Alelos , Secuencia de Aminoácidos , Brasil , Codón sin Sentido , Cruzamientos Genéticos , Genotipo , Fenotipo , Fitomejoramiento , Mutación Puntual , Glycine max/química
2.
Theor Appl Genet ; 129(5): 863-77, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26952252

RESUMEN

KEY MESSAGE: Using a combination of phenotypic screening and molecular, statistical, and linkage analyses, we have mapped a dominant soybean rust resistance gene in soybean PI 567104B. Asian soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Syd. and P. Syd., is one of the most economically important diseases that affect soybean production worldwide. A long-term strategy for minimizing the effects of SBR is the development of genetically resistant cultivars. The objectives of the study were to identify the location of a rust-resistance (Rpp) gene(s) in plant introduction (PI) 567104B, and to determine if the gene(s) in PI 567104B was different from previously mapped Rpp loci. The progeny of the cross of 'IAR 2001 BSR' × PI 567104B was phenotyped from field assays of the F 2:3 and F 4:5 generations and from a growth chamber assay of 253 F 5:6 recombinant inbred lines (RILs). For the growth chamber, the phenotyping was conducted by inoculation with a purified 2006 fungal isolate from Mississippi. A resistance gene locus on PI 567104B was mapped to a region containing the Rpp6 locus on chromosome 18. The high level of resistance of F 1 plants from two other crosses with PI 567104B as one of the parents indicated that the gene from PI 567104B was dominant. The interval containing the gene is flanked by the simple sequence repeat (SSR) markers Satt131 and Satt394, and includes the SSR markers BARCSOYSSR_18_0331 and BARCSOYSSR_18_0380. The results also indicated that the resistance gene from PI 567104B is different from the Rpp1 to the Rpp4 genes previously identified. To determine if the gene from PI 567104B is different from the Rpp6 gene from PI 567102B, additional research will be required.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Glycine max/genética , Enfermedades de las Plantas/genética , Basidiomycota , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Genes Dominantes , Ligamiento Genético , Marcadores Genéticos , Genotipo , Endogamia , Repeticiones de Microsatélite , Fenotipo , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
3.
Theor Appl Genet ; 127(1): 97-111, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24132738

RESUMEN

KEY MESSAGE: fap 1 mutation is caused by a G174A change in GmKASIIIA that disrupts a donor splice site recognition and creates a GATCTG motif that enhanced its expression. Soybean oil with reduced palmitic acid content is desirable to reduce the health risks associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mutation, determine its molecular basis, estimate the amount of phenotypic variation in fatty acid composition explained by this locus, determine if there are epistatic interactions between the fap1 and fap nc loci and, determine if the fap1 mutation has pleiotropic effects on seed yield, oil and protein content in three soybean populations. This study detected two major QTL for 16:0 content located in chromosome 5 (GmFATB1a, fap nc) and chromosome 9 near BARCSOYSSR_09_1707 that explained, with their interaction, 66-94 % of the variation in 16:0 content in the three populations. Sequencing results of a putative candidate gene, GmKASIIIA, revealed a single unique polymorphism in the germplasm line C1726, which was predicted to disrupt the donor splice site recognition between exon one and intron one and produce a truncated KASIIIA protein. This G to A change also created the GATCTG motif that enhanced gene expression of the mutated GmKASIIIA gene. Lines homozygous for the GmKASIIIA mutation (fap1) had a significant reduction in 16:0, 18:0, and oil content; and an increase in unsaturated fatty acids content. There were significant epistatic interactions between GmKASIIIA (fap1) and fap nc for 16:0 and oil contents, and seed yield in two populations. In conclusion, the fap1 phenotype is caused by a single unique SNP in the GmKASIIIA gene.


Asunto(s)
Glycine max/genética , Palmitatos/metabolismo , Proteínas de Plantas/genética , Aceite de Soja/química , Northern Blotting , Mapeo Cromosómico , Cromosomas de las Plantas , Estudios de Asociación Genética , Sitios de Carácter Cuantitativo , Glycine max/metabolismo
4.
Theor Appl Genet ; 111(1): 1-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15887040

RESUMEN

The objective of this study was to assess the relationships among quantitative trait loci (QTL) detected for European corn borer (ECB) tunneling and cell-wall components (CWC) neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) content in leaf-sheath and stalk tissues in a maize recombinant inbred line population derived from inbred lines B73 and B52. Most of the QTL for ECB resistance (10/13) were at QTL positions for one or more CWC. Of the 12 QTL for NDF and ADF in leaf-sheaths, five for each trait were at or near QTL for ECB tunneling. Four of these five QTL for NDF and ADF mapped to common locations. Four of the eight leaf-sheath ADL QTL were detected in the same genomic regions as ECB QTL. For stalk tissue, four regions contained common/overlapping QTL for ECB tunneling, NDF, and ADF. Six such regions were observed for stalk ADL and ECB tunneling. Seven of the ten QTL associated with both CWC and ECB tunneling contributed to the negative correlations observed between these traits, while relatively few QTL effects were positively correlated. This suggests that while CWC contribute to ECB resistance in this population, other mechanisms and other genes also are involved. Several QTL contributing to the negative correlations between ECB tunneling and CWC in the leaf-sheaths mapped to similar positions as QTL detected in tropical maize populations for resistance to leaf-feeding by Diatraea grandiosella Dyar and Diatraea saccharalis Fabricus. These regions may contain genes involved in the synthesis of cellulose, hemicellulose, and lignin in the leaf-blades and leaf-sheaths of maize.


Asunto(s)
Inmunidad Innata/genética , Lepidópteros , Enfermedades de las Plantas/parasitología , Sitios de Carácter Cuantitativo , Zea mays/citología , Zea mays/genética , Animales , Pared Celular/química , Mapeo Cromosómico , Genotipo , Lignina/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA