Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Evol Biol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567816

RESUMEN

In the face of unprecedented global transformations, unraveling the intricate mechanisms governing biodiversity patterns is imperative for predicting and interpreting species responses. An important element in this interplay is fragmentation and the spatial mosaic or arrangement of suitable sites within the landscape. Beyond its well-documented impact on biodiversity loss, fragmented landscapes also influence the origin of biodiversity, by influencing speciation dynamics. This research employs a model that integrates spatial configuration and dispersal abilities of individuals to investigate the impact of landscape configuration on species' evolutionary trajectories. Specifically, we propose a microevolutionary model where individuals are characterized by their dispersal ability and a genome, allowing population evolution and diversification. Space is explicitly characterized by suitable and unsuitable sites that define fragmented landscapes. Our model demonstrates how intermediate dispersal abilities enhance diversification. However, simulations of more fragmented landscapes result in a lower total number of individuals and a lower percentage of occupied sites by individuals, particularly when species have limited dispersal abilities. Furthermore, we have found that intermediate levels of fragmentation can stimulate greater species richness, while higher levels of speciation and extinction events tend to occur under higher fragmentations. Our results also show a non-monotonic dependence of richness on dispersal, supporting the intermediate dispersal hypothesis as promotor of diversification, demonstrating the synergistic effects of landscape configuration and species dispersal ability in the processes of speciation, extinction, and diversification. This impact of fragmentation poses a real challenge for biodiversity in the context of a dynamic world.

2.
Glob Chang Biol ; 28(11): 3683-3693, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246902

RESUMEN

Humans have reshaped the distribution of biodiversity across the globe, extirpating species from regions otherwise suitable and restricting populations to a subset of their original ranges. Here, we ask if anthropogenic range contractions since the Late Pleistocene led to an under-representation of the realized niches for megafauna, an emblematic group of taxa often targeted for restoration actions. Using reconstructions of past geographic distributions (i.e., natural ranges) for 146 extant terrestrial large-bodied (>44 kg) mammals, we estimate their climatic niches as if they had retained their original distributions and evaluate their observed niche dynamics. We found that range contractions led to a sizeable under-representation of the realized niches of several species (i.e., niche unfilling). For 29 species, more than 10% of the environmental space once seen in their natural ranges has been lost due to anthropogenic activity, with at least 12 species undergoing reductions of more than 50% of their realized niches. Eighteen species may now be confined to low-suitability locations, where fitness and abundance are likely diminished; we consider these taxa 'climatic refugees'. For those species, conservation strategies supported by current ranges risk being misguided if current, suboptimal habitats are considered baseline for future restoration actions. Because most climate-based biodiversity forecasts rely exclusively on current occurrence records, we went on to test the effect of neglecting historical information on estimates of species' potential distribution - as a proxy of sensitivity to climate change. We found that niche unfilling driven by past range contraction leads to an overestimation of sensitivity to future climatic change, resulting in 50% higher rates of global extinction, and underestimating the potential for megafauna conservation and restoration under future climate change. In conclusion, range contractions since the Late Pleistocene have also left imprints on megafauna realized climatic niches. Therefore, niche truncation driven by defaunation can directly affect climate and habitat-based conservation strategies.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Predicción , Humanos , Mamíferos
3.
Mol Phylogenet Evol ; 154: 106993, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148523

RESUMEN

Lineage differentiation, long-term persistence, and range limitation promote high levels of phylogenetic and phylogeographic endemisms and likely underlie the abundant morphologically cryptic diversity observed in the Brazilian Atlantic Forests (AF). We explore lineage differentiation and range restriction in the AF and ask if genetic divergence and morphological disparity are correlated by integrating coalescent-based species delimitation, molecular phylogenetic, and morphological analyses in the lizard genus Leposoma. We present the first species tree for Leposoma and of their tribe, the Ecpleopodini. The analyses are based on the largest dataset ever assembled for Leposoma in terms of number of species (all represented), genetic markers (12 loci), and geographic coverage (~2,500 km). The exercise allows us to robustly delimit species within the genus and phylogeographic lineages within all species. We find support for the monophyly of the genus and for the recognition of a yet undescribed species around the Baía de Todos-os-Santos, in the state of Bahia; this form is distinct from all other congeners, both genetically and morphologically. We find that L. baturitensis, from the northeastern state of Ceará, is basal to the genus - and sister to a clade of six species restricted to the AF across the eastern coast of Brazil. Relationships within this coastal clade are ((((L. annectans, Leposoma sp.), L. scincoides), L. puk) (L. nanodactylus, L. sinepollex)). Phylogenetic and phylogeographic analyses, together with precise distribution data, allowed us to update the ranges of species and phylogeographic lineages. We reveal pervasive geographic restriction of divergent lineages in Leposoma at and below species level and discuss how forest refuges and rivers might have contributed to it. We find that morphological disparity lags behind genetic divergence in the genus because although they are correlated, the first accumulates at a much slower rate than the latter. We hope to encourage new studies in the area of AF north of the Doce river; phylogeographic sampling in that region has been much less common relative to southern sites, yet it may hold the key to several important processes defining biodiversity patterns in eastern Brazil. This appears to specially apply to processes underlying geographic restriction of morphologically cryptic, yet genetic divergent lineages, as the case of Leposoma.


Asunto(s)
Bosques , Variación Genética , Geografía , Lagartos/anatomía & histología , Lagartos/genética , Animales , Biodiversidad , Brasil , ADN Mitocondrial/genética , Flujo Genético , Filogenia , Filogeografía , Probabilidad , Especificidad de la Especie
4.
Mol Phylogenet Evol ; 143: 106661, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31644958

RESUMEN

Knowledge of how contemporary and historical factors drive patterns of genetic structure across geographic space can shed light on the processes underlying diversification. This approach is especially fruitful in studies of widespread species or species clades that occur across multiple environmental conditions and biomes. In the Neotropics, specifically, molecular data from widespread vertebrate species have revealed high levels of lineage diversity and spatial genetic structure - yet studies that explore the possible correlates of local structure patterns are lacking. We investigate the distribution of lineage diversity within two widespread South American skink species complexes of the genus Mabuya. We characterize genetic structure and diversity in these widely ranged lizards, and identify potential geographic and environmental correlates, to shed light on the processes that promote lineage diversification across the heterogeneous landscapes which they occupy. In both groups, we found mitochondrial lineages to be spatially structured along the coastal forests and the savannas of Brazil. These mtDNA patterns are, however, not shared with those inferred from nuclear DNA markers. The geographic location of major mitochondrial genetic breaks is consistent with those of other taxa, suggesting common responses to former landscape change in eastern South America, particularly along geological faults. Genetic differentiation is correlated with environmental turnover and geographic separation in one, but not in the other, group of skinks. Compared to other studies of similarly widely distributed organisms, the link between spatial environmental gradients and genetic differentiation is not as strong or consistent, suggesting a more complex history underlying current phylogeographic patterns. Our genetic data indicate the existence of yet undescribed diversity in wide-ranging lizards, and the value of phylogenetic and phylogeographic studies of similarly understudied species.


Asunto(s)
Lagartos/clasificación , Lagartos/genética , Animales , Brasil , Núcleo Celular/genética , ADN Mitocondrial/química , Ecosistema , Bosques , Estructuras Genéticas , Variación Genética , Pradera , Filogenia , Filogeografía , Clima Tropical
5.
Mol Phylogenet Evol ; 149: 106813, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32272149

RESUMEN

Distributed across topographically complex landscapes that vary from lowland to high elevation, the Atlantic Forest harbors one of the richest biotas worldwide. Atlantic Forest amphibians are particularly speciose, taxonomic accounts are rising and the group is used as model for biogeographic inference. Past climate-related habitat fragmentation is often invoked to explain diversification, with montane taxa expected to become more widespread during glacial times and restrained at interglacials. In this study we investigate diversification in Ischnocnema lactea and I. holti (Anura: Brachycephalidae), two rare frog species inhabiting Atlantic Forest montane regions in Southeastern Brazil. Previous phylogenetic accounts have suggested uncertain limits between these two sister species. We assembled a multilocus DNA dataset, delimited lineages in this clade, and used ecological niche modeling to explore past and future putative ranges. Assignment analyses and traditional and coalescent phylogenetic methods confirmed the existence of a species complex of Miocene origin comprising nine lineages, most of which show very narrow ranges. Lineages were fully supported as species based in coalescent species delimitation, but the phylogenetic relationships among lineages in higher elevation were unresolved. Models of past ranges suggest extensive suitable areas at the last glacial maximum which, along with phylogenetic uncertainty, are consistent with a hypothesis that climate driven vicariance at higher elevation areas resulted in hard polytomies. Species distribution models under future climates suggest narrower ranges of the lineages relative to now, but no species are currently considered endangered. Overall, our results argue in favor for the reassessment of the taxonomic and conservation status of the I. holti - I. lactea species complex.


Asunto(s)
Anuros/clasificación , Biodiversidad , Bosques , Filogenia , Altitud , Animales , Anuros/genética , Teorema de Bayes , Brasil , Clima , Modelos Biológicos , Filogeografía
6.
Mol Phylogenet Evol ; 148: 106819, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289449

RESUMEN

The Brazilian Atlantic Forest harbors high levels of anuran diversity and endemism, including several taxa restricted to small geographic ranges. Here, we provide a multilocus phylogeny for Paratelmatobiinae, a leptodactylid subfamily composed of small-ranged species distributed in the Brazilian Atlantic Forest and in the campo rupestre ecosystem. We performed Bayesian inference and maximum likelihood analyses using three mitochondrial and five nuclear markers, and a matrix comprising a broad taxonomic sampling. We then delimitated independently evolving lineages within the group. We recovered Paratelmatobiinae and each of its four genera as monophyletic and robustly supported. Five putatively new species included in our analyses were unambiguously supported in the phylogenetic trees and delimitation analyses. We also recovered other deeply divergent and geographically structured lineages within the four genera of Paratelmatobiinae. Our estimation of divergence times indicates that diversification in the subfamily began in the Eocene and continued until the Pleistocene. We discuss possible scenarios of diversification for the four genera of Paratelmatobiinae, and outline the implications of our findings for taxonomy and conservation.


Asunto(s)
Anuros/clasificación , Biodiversidad , Bosques , Filogenia , Animales , Teorema de Bayes , Brasil , Calibración , Núcleo Celular/genética , Consenso , ADN Mitocondrial/genética , Geografía , Especificidad de la Especie , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 113(29): 7978-85, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27432951

RESUMEN

We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future.


Asunto(s)
Lagartos/genética , Animales , Clima , Demografía , Bosques , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple
8.
Mol Phylogenet Evol ; 113: 49-58, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502765

RESUMEN

Data on species ranges and phylogenetic relationships are key in historical biogeographical inference. In South America, our understanding of the evolutionary processes that underlie biodiversity patterns varies greatly across regions. Little is known, for instance, about the drivers of high endemism in the southern montane region of the Atlantic Rainforest. In this region, former biogeographic connections with other South American ecosystems have been invoked to explain the phylogenetic affinities of a number of endemic taxa. This may also be the case of the montane anole lizards Anolis nasofrontalis and A. pseudotigrinus, known from few specimens collected more than 40years ago. We combine new genetic data with published sequences of species in the Dactyloa clade of Anolis to investigate the phylogenetic relationships of A. nasofrontalis and A. pseudotigrinus, as well as estimate divergence times from their closest relatives. Based on newly sampled and previously overlooked specimens, we provide a taxonomic re-description of those two taxa. Our phylogenetic analysis recovered six main clades within Dactyloa, five of which were previously referred to as species series (aequatorialis, heterodermus, latifrons, punctatus, roquet). A sixth clade clustered A. nasofrontalis and A. pseudotigrinus with A. dissimilis from western Amazonia, A. calimae from the Andes, A. neblininus from the Guiana Shield, and two undescribed Andean taxa. We therefore define a sixth species series within Dactyloa: the neblininus series. Close phylogenetic relationships between highly disjunct, narrowly-distributed anoles suggest that patches of suitable habitat connected the southern Atlantic Forest to western South America during the Miocene, in agreement with the age of former connections between the central Andes and the Brazilian Shield as a result of Andean orogeny. The data also support the view of recurrent evolution (or loss) of a twig anole-like phenotype in mainland anoles, in apparent association with the occurrence in montane settings. Our findings stress the value of complementary genetic sampling efforts across South American countries to advance studies of mainland anole taxonomy and evolution.


Asunto(s)
Ecosistema , Bosques , Lagartos/fisiología , Filogenia , Filogeografía , Animales , Océano Atlántico , Brasil , Femenino , Lagartos/anatomía & histología , Lagartos/genética , Masculino , Pigmentación , Factores de Tiempo
9.
BMC Evol Biol ; 16(1): 267, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927169

RESUMEN

BACKGROUND: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. RESULTS: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. CONCLUSIONS: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis.


Asunto(s)
Abejas/clasificación , Abejas/genética , Animales , Brasil , ADN Mitocondrial/genética , Bosques , Variación Genética , Pradera , Haplotipos , Filogenia , Filogeografía
10.
Mol Ecol ; 25(20): 5174-5186, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27564209

RESUMEN

Shifts in the geographic distribution of habitats over time can promote dispersal and vicariance, thereby influencing large-scale biogeographic patterns and ecological processes. An example is that of transient corridors of suitable habitat across disjunct but ecologically similar regions, which have been associated with climate change over time. Such connections likely played a role in the assembly of tropical communities, especially within the highly diverse Amazonian and Atlantic rainforests of South America. Although these forests are presently separated by open and dry ecosystems, paleoclimatic and phylogenetic evidence suggest that they have been transiently connected in the past. However, little is known about the timing, magnitude and the distribution of former forest connections. We employ sequence data at multiple loci from three codistributed arboreal lizards (Anolis punctatus, Anolis ortonii and Polychrus marmoratus) to infer the phylogenetic relationships among Amazonian and Atlantic Forest populations and to test alternative historical demographic scenarios of colonization and vicariance using coalescent simulations and approximate Bayesian computation (ABC). Data from the better-sampled Anolis species support colonization of the Atlantic Forest from eastern Amazonia. Hierarchical ABC indicates that the three species colonized the Atlantic Forest synchronously during the mid-Pleistocene. We find support of population bottlenecks associated with founder events in the two Anolis, but not in P. marmoratus, consistently with their distinct ecological tolerances. Our findings support that climatic fluctuations provided key opportunities for dispersal and forest colonization in eastern South America through the cessation of environmental barriers. Evidence of species-specific histories strengthens assertions that biological attributes play a role in responses to shared environmental change.


Asunto(s)
Distribución Animal , Lagartos/genética , Filogenia , Bosque Lluvioso , Animales , Teorema de Bayes , Cambio Climático , Lagartos/clasificación , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN , América del Sur
11.
Am J Bot ; 103(1): 153-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26747843

RESUMEN

PREMISE OF THE STUDY: Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. METHODS: We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. KEY RESULTS: We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. CONCLUSIONS: To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning.


Asunto(s)
Cambio Climático , Ecosistema , Variación Genética , Penstemon/fisiología , Dispersión de las Plantas , Teorema de Bayes , Modelos Genéticos , Noroeste de Estados Unidos , Penstemon/genética , Sudoeste de Estados Unidos
12.
Mol Phylogenet Evol ; 82 Pt A: 258-68, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25451806

RESUMEN

The ecology and evolution of Caribbean anoles are well described, yet little is known about mainland anole species. Lack of phylogenetic information limits our knowledge about species boundaries, morphological evolution, and the biogeography of anoles in South America. To help fill this gap, we provide an updated molecular phylogeny of the Dactyloa (Dactyloidae), with emphasis on the punctata species group. By sampling understudied Amazonian taxa, we (i) assess the phylogenetic placement of the 'odd anole', D. dissimilis; (ii) infer the relationships of the proboscis-bearing D. phyllorhina, testing the hypothesis of independent nasal appendage evolution within the anole radiation; and (iii) examine genetic and dewlap color variation in D. punctata and D. philopunctata. Combining multiple nuclear loci with a review of the fossil record, we also (iv) estimate divergence times within the pleurodont iguanian clade of lizards, including Amazonian representatives of Dactyloa and Norops (Dactyloidae) and of Polychrus (Polychrotidae). We recover the five Dactyloa clades previously referred to as the aequatorialis, heteroderma, latifrons, punctata and roquet species groups, as well as a sixth clade composed of D. dissimilis and the non-Amazonian D. neblinina and D. calimae. We find D. phyllorhina to be nested within the punctata group, suggesting independent evolution of the anole proboscis. We consistently recover D. philopunctata nested within D. punctata, and report limited genetic divergence between distinct dewlap phenotypes. The most recent common ancestor of Dactyloa, Anolis and Norops dates back to the Eocene. Most Amazonian taxa within both Dactyloa and Norops diverged in the Miocene, but some diversification events were as old as the late Eocene and late Oligocene. Amazonian Polychrus diverged in the Pliocene. Our findings have broad implications for anole biogeography, disputing recent suggestions that modern dactyloid genera were present in the Caribbean region during the Cretaceous.


Asunto(s)
Evolución Biológica , Lagartos/clasificación , Filogenia , Animales , Teorema de Bayes , Fósiles , Funciones de Verosimilitud , Lagartos/anatomía & histología , Lagartos/genética , Modelos Genéticos , Fenotipo , Análisis de Secuencia de ADN , América del Sur
13.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25122231

RESUMEN

Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond.


Asunto(s)
Biodiversidad , Clima , Variación Genética/genética , Filogeografía , Vertebrados/genética , Animales , Secuencia de Bases , Evolución Biológica , Brasil , Datos de Secuencia Molecular , Dinámica Poblacional
14.
Nat Commun ; 14(1): 5276, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644003

RESUMEN

Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth's biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.


Asunto(s)
Insectos , Mitocondrias , Animales , Insectos/genética , ADN Mitocondrial/genética , Biodiversidad , Variación Genética
15.
Science ; 379(6630): eabo5003, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701466

RESUMEN

Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Bosques , Humanos , Biodiversidad , Conservación de los Recursos Naturales , Brasil
16.
Proc Biol Sci ; 279(1726): 194-201, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21632626

RESUMEN

Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.


Asunto(s)
Altitud , Clima , Especiación Genética , Vertebrados/clasificación , Animales , Biodiversidad , Evolución Biológica , Geografía , América Latina , América del Norte , Filogenia , Vertebrados/genética
17.
Mol Phylogenet Evol ; 62(3): 880-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22108674

RESUMEN

Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil's montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern São Paulo. The location of the phylogeographic break broadly matches the location of a NW-SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot.


Asunto(s)
Anuros/clasificación , Anuros/genética , Animales , Biodiversidad , Brasil , Clima , Citocromos b/genética , Femenino , Genes RAG-1 , Cariotipificación , Masculino , Filogenia , Filogeografía , ARN Ribosómico 16S
18.
Mol Phylogenet Evol ; 62(3): 826-38, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22166838

RESUMEN

Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distributed in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversification within the genus. These molecular data were gathered from 23 specimens from 19 populations, including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available. We also examined morphological characters to analyze differences within Dendrophryniscus. We found deep genetic divergence between an Amazonian and an Atlantic Forest clade, dating back to Eocene. Morphological data corroborate this distinction. We thus propose to assign the Amazonian species to a new genus, Amazonella. The species currently named R. boulengeri, which has been previously assigned to the genus Rhamphophryne, is shown to be closely related to Dendrophryniscus species. Our findings illustrate cryptic trends in bufonid morphological evolution, and point to a deep history of persistence and diversification within the Amazonian and Atlantic rainforests. We discuss our results in light of available paleoecological data and the biogeographic patterns observed in other similarly distributed groups.


Asunto(s)
Bufonidae/clasificación , Bufonidae/genética , Filogenia , Animales , Evolución Biológica , Bufonidae/anatomía & histología , ADN Mitocondrial/química , Genes RAG-1 , Genes de ARNr , Datos de Secuencia Molecular , Filogeografía
19.
PeerJ ; 10: e13534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789655

RESUMEN

Monitoring biodiversity change is key to effective conservation policy. While it is difficult to establish in situ biodiversity monitoring programs at broad geographical scales, remote sensing advances allow for near-real time Earth observations that may help with this goal. We combine periodical and freely available remote sensing information describing temperature and precipitation with curated biological information from several groups of animals and plants in the Brazilian Atlantic rainforest to design an indirect remote sensing framework that monitors potential loss and gain of biodiversity in near-real time. Using data from biological collections and information from repeated field inventories, we demonstrate that this framework has the potential to accurately predict trends of biodiversity change for both taxonomic and phylogenetic diversity. The framework identifies areas of potential diversity loss more accurately than areas of species gain, and performs best when applied to broadly distributed groups of animals and plants.


Asunto(s)
Bosque Lluvioso , Tecnología de Sensores Remotos , Animales , Filogenia , Brasil , Biodiversidad , Plantas
20.
Nat Ecol Evol ; 6(5): 506-519, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332280

RESUMEN

Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth's biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth's biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.


Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , Biodiversidad , Ecología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA