Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768955

RESUMEN

Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.


Asunto(s)
Selenio , Animales , Humanos , Selenio/metabolismo , Selenoproteínas/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estado Nutricional
2.
Molecules ; 26(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34577116

RESUMEN

Lipids from milk are important nutritional components, although their health effects, especially for animal milks, are still questioned. Four types of commercial milks, two semi-skimmed animal milks (bovine and goat) and two vegetable ones (soy and rice), along with their total and free lipid fractions recovered by sequential centrifugation or by ethyl acetate extraction, respectively, have been analyzed. A higher antioxidant ability, reported as Trolox equivalent antioxidant capacity, was found for all raw milks compared to that of rice. This trend was confirmed, except for soy milk, as ROS reduction in Caco-2 cells. The free lipid fraction was shown to have the highest antioxidant potential in both chemical and biological tests. Moreover, goat and soy raw milks positively regulated Caco-2 cell viability after an inflammatory stimulus. This effect was lost when their total lipid fraction was tested. Finally, only the free lipid fraction from rice milk preserved the Caco-2 viability after LPS stimulation. Our data demonstrated that the lipid profile of each milk, characterized by GC-MS analysis, could contribute to dictate its biological effects, and, although additional in vitro and in vivo studies are needed, they could support the literature re-evaluating the health effects of animal-based versus plant-based milks in the intestinal cellular model.


Asunto(s)
Antioxidantes , Verduras , Células CACO-2 , Supervivencia Celular , Fermentación , Humanos , Intestinos/efectos de los fármacos
3.
Bioorg Chem ; 105: 104440, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33217633

RESUMEN

The indole scaffold has been recognized, over the years, as a model for the synthesis of compounds with anticancer activity by dint of its substantiated ability to act via multiple mechanisms, which also involves the inhibition of enzymes engaged in DNA replication. In this regard, a new series of indole and pyranoindole derivatives have been prepared, some of which showed good antitumor activity and proved their inhibitory effects on the tubulin target. The anticancer activity of the newly synthesized compounds has been evaluated on breast cancer cell lines, as MCF-7 and MDA-MB231, cervical cancer cells line HeLa and Ishikawa endometrial cancer cell line. Among the compounds under study, 7 exhibited a good antitumor activity on HeLa cell line (IC50 = 3.6 ± 0.5), leading to cell death by apoptosis due to the inhibition of tubulin polymerization, which demonstrated that the compound can explicate its function in a similar way to Vinblastine, a well-known inhibitor of tubulin polymerization. The data were also confirmed by in silico assays. No cytotoxicity against normal cells has been detected. Furthermore, in order to investigate the antioxidant properties, DPPH and ABTS tests were performed, together with fluorescence assays on 3T3-L1 cells. All our findings taken together led us to consider compound 7 a favourable candidate for the battle against cancer.


Asunto(s)
Antineoplásicos/síntesis química , Antioxidantes/síntesis química , Indoles/síntesis química , Moduladores de Tubulina/síntesis química , Tubulina (Proteína)/metabolismo , Células 3T3 , Animales , Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Peróxido de Hidrógeno/metabolismo , Indoles/farmacología , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Moduladores de Tubulina/farmacología
4.
Biometals ; 31(5): 715-735, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30014355

RESUMEN

Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Huntington's chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.


Asunto(s)
Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Animales , Humanos , Hierro/efectos adversos , Quelantes del Hierro/efectos adversos , Quelantes del Hierro/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Estrés Oxidativo/efectos de los fármacos
5.
Bioorg Med Chem ; 24(5): 1002-5, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26833243

RESUMEN

Candida spp. are responsible for many biomaterial-related infections; they give rise to infective pathologies typically associated with biofilm formation. We recently reported that the echinocandin anidulafungin (ANF) showed a strong in vitro activity against both planktonic and biofilms cells. Herein, we report the antifungal activities of ANF alone and in association with some non-steroidal anti-inflammatory drugs (NSAIDs) against nine Candida strain biofilms: four Candida albicans, two Candida glabrata and three Candida guilliermondii. The activity of ANF was assessed using an in vitro microbiological model relevant for clinical practice. ANF proved oneself to be active against biofilms cells, and a clear-cut synergism was found against Candida species biofilms when ANF was used in combination with three NSAIDs: aspirin, diclofenac, ibuprofen. The positive synergism against Candida spp. of ANF in association with aspirin or the other NSAIDs proved to be a very effective antifungal treatment (FICI<0.5). These results may provide the starting point for new combination therapies of ANF with NSAIDs against Candida biofilm pathologies.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Equinocandinas/farmacología , Anidulafungina , Aspirina/farmacología , Biopelículas/efectos de los fármacos , Candida/fisiología , Candidiasis/microbiología , Sinergismo Farmacológico , Humanos
6.
Rev Environ Contam Toxicol ; 238: 45-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26670034

RESUMEN

Environmental and occupational exposure to a large number of chemicals occurs at various stages throughout human life. Many of these are devoid of toxicity, but some could pose a significant health risk, i.e. the exposure to environmental xenobiotic metals as lead, mercury (Sinicropi et al. 2010a; Carocci et al. 2014), cadmium, etc. In particular, lead has long been a widespread public concern (Basha and Reddy 2010). Lead is one of the earliest heavy metals discovered by men. Due to its unique properties, as low melting point, softness, malleability, ductility, and resistance to corrosion, men have used lead for the last 5000 years in a wide range of applications.


Asunto(s)
Antioxidantes/metabolismo , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Humanos , Exposición Profesional
7.
Rev Environ Contam Toxicol ; 229: 1-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24515807

RESUMEN

Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most important mechanism by which mercury causes toxicity appears to bemitochondrial damage via depletion of GSH (Nicole et a!. 1998), coupled with binding to thiol groups ( -SH), which generates free radicals. Mercury has a high affinity for thiol groups ( -SH) and seleno groups ( -SeH) that are present in amino acids as cysteine and N-acetyl cysteine, lipoic acid, proteins, and enzymes. N-acetylcysteine and cysteine are precursors for the biosynthesis of GSH, which is among the most powerful intracellular antioxidants available to protect against oxidative stress and inflammation.Mercury and methylmercury induce mitochondrial dysfunction, which reduces ATP synthesis and increases lipid, protein and DNA peroxidation. The content of metallothioneines, GSH, selenium and fish high in omega-3 fatty acids appear to be strongly related with degree of inorganic and organic mercury toxicity, and with the protective detoxifying mechanisms in humans. In conclusion, depletion of GSH,breakage of mitochondria, increased lipid peroxidation, and oxidation of proteins and DNA in the brain, induced by mercury and his salts, appear to be important factors in conditions such as ALS and AD (Bains and Shaw 1997; Nicole eta!. 1998;Spencer eta!. 1998; Alberti et a!. 1999).


Asunto(s)
Mercurio/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Animales , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Mercurio/farmacocinética , Mitocondrias/efectos de los fármacos , Enfermedades Neurodegenerativas/metabolismo
8.
Foods ; 13(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338554

RESUMEN

Ellagic acid (EA), a polyphenolic constituent of plant origin, has been thoroughly investigated for its hypothesised pharmacological properties among which antioxidant and neuroprotective activities are included. The present study was designed to explore whether EA could attenuate heavy metal (cadmium, mercury, and lead)-induced neurotoxicity in SH-SY5Y cells, which were utilized as a model system for brain cells. MTT and LDH assays were performed to examine the viability of the SH-SY5Y cells after exposure to Cd, Hg, and Pb (either individually or in combination with EA) as well as the effects of necrotic cell death, respectively. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), a cell-based assay, was performed to determine whether EA could protect SH-SY5Y from heavy metal-induced oxidative stress. Results allowed us to assess the capability of EA to enhance the number of viable SH-SY5Y cells after exposure to heavy metal toxicity. Pre-treatment with EA showed a considerable, concentration-dependent, cytoprotective effect, particularly against Cd2+-induced toxicity. This effect was confirmed through the reduction of LDH release after the simultaneous cell treatment with Cd2+ and EA compared with Cd2+-treated cells. Furthermore, a significant, concentration-dependent decrease in reactive oxygen species (ROS) production, induced by H2O2 or heavy metals, was observed in the same model. Overall, the obtained results provide further insight into the protective role of EA against heavy metal-induced neurotoxicity and oxidative stress, thus indicating the potential beneficial effects of the consumption of EA-rich foods. However, to confirm its effects, well-designed human randomized controlled trials are needed to fill the existing gap between experimental and clinical research.

9.
Foods ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891002

RESUMEN

Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.

10.
Heliyon ; 10(3): e25260, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327442

RESUMEN

This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.

11.
Biophys J ; 104(2): 344-54, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442856

RESUMEN

Previously identified potent and/or use-dependent mexiletine (Mex) analogs were used as template for the rational design of new Na(v)-channel blockers. The effects of the novel analogs were tested on sodium currents of native myofibers. Data and molecular modeling show that increasing basicity and optimal alkyl chain length enhance use-dependent block. This was demonstrated by replacing the amino group with a more basic guanidine one while maintaining a proper distance between positive charge and aromatic ring (Me13) or with homologs having the chirality center nearby the amino group or the aromatic ring. Accordingly, a phenyl group on the asymmetric center in the homologated alkyl chain (Me12), leads to a further increase of use-dependent behavior versus the phenyl Mex derivative Me4. A fluorine atom in paraposition and one ortho-methyl group on the xylyloxy ring (Me15) increase potency and stereoselectivity versus Me4. Charge delocalization and greater flexibility of Me15 may increase its affinity for Tyr residues influencing steric drug interaction with the primary Phe residue of the binding site. Me12 and Me15 show limited selectivity against Na(v)-isoforms, possibly due to the highly conserved binding site on Na(v). To our knowledge, the new compounds are the most potent Mex-like Na(v) blockers obtained to date and deserve further investigation.


Asunto(s)
Mexiletine/farmacología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Mexiletine/análogos & derivados , Mexiletine/química , Modelos Moleculares , Conformación Molecular , Músculos/efectos de los fármacos , Músculos/metabolismo , Miocardio/metabolismo , Especificidad de Órganos/efectos de los fármacos , Bloqueadores de los Canales de Sodio/química , Estereoisomerismo
12.
Bioorg Med Chem Lett ; 23(17): 4820-3, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23886686

RESUMEN

Lubeluzole, a neuroprotective anti-ischemic drug, and its enantiomer were prepared following a convenient procedure based on hydrolytic kinetic resolution. The ee values were >99% and 96%, respectively, as assessed by HPLC analysis. The chemosensitizing effects of both enantiomers were evaluated in combination with either doxorubicin (human ovarian adenocarcinoma A2780 cells) or paclitaxel (human lung carcinoma A549 cells) by the MTT assay. At the lowest concentrations used, lubeluzole showed an overall and remarkable tendency to synergize with both anticancer drugs. In ovarian cancer cells a clear prevalence of antagonistic effect was observed for the R-enantiomer. The synergistic effects of lubeluzole for both drugs were observed over a wide concentration window (0.005-5 µM), the lowest limit being at least 40 times lower than human plasma concentrations previously reported as causing serious side effects.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Piperidinas/química , Piperidinas/farmacología , Tiazoles/química , Tiazoles/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Humanos , Paclitaxel/farmacología , Piperidinas/síntesis química , Estereoisomerismo , Tiazoles/síntesis química
13.
Bioorg Med Chem ; 21(4): 847-51, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23332368

RESUMEN

Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT(1) and MT(2) melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 2',7'-dichlorodihydrofluorescein (DCFH) in the DCFH-diacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H(2)O(2)-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, too.


Asunto(s)
Amidas/química , Antioxidantes/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Receptor de Melatonina MT1/química , Receptor de Melatonina MT2/química , Amidas/toxicidad , Antioxidantes/toxicidad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Ligandos , Inhibidores de Proteínas Quinasas/toxicidad , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
14.
Mini Rev Med Chem ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37366352

RESUMEN

Oxidative stress has been reported to be involved in the onset and development of several diseases, including neurodegenerative and cardiovascular disorders, some types of cancer, and diabetes. Therefore, finding strategies to detoxify free radicals is an active area of research. One of these strategies is the use of natural or synthetic antioxidants. In this context, melatonin (MLT) has been proven to possess most of the required characteristics of an efficient antioxidant. In addition, its protection against oxidative stress continues after being metabolized, since its metabolites also exhibit antioxidant capacity. Based on the appealing properties of MLT and its metabolites, various synthetic analogues have been developed to obtain compounds with higher activity and lower side effects. This review addresses recent studies with MLT and related compounds as potential antioxidants.

15.
Biology (Basel) ; 12(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887045

RESUMEN

Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.

16.
Antibiotics (Basel) ; 12(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136685

RESUMEN

The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, and antioxidant activities. Herein, we propose a new series of benzothiazole-phthalimide hybrids obtained by linking the phthalimide moiety to differently substituted benzothiazole nuclei through the N atom. These compounds have been screened for their anticancer properties against two human breast cancer cell lines. Furthermore, we delved into the mechanism of action of the most active hybrid, compound 3h, by assessing its capability to damage the nuclear DNA, trigger the apoptotic process in the high metastatic MDA-MB-231 cells, and prevent cellular migration. Moreover, in view of the documented antimicrobial activities of the two scaffolds involved, we explored the antibacterial and antifungal effects of the studied compounds by means of the broth microdilution method. Among the studied compounds, 3h showed the highest antimicrobial activity, both against gram-positive and gram-negative bacterial strains belonging to the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and against fungal strains of the Candida species with MICs values ranging from 16 to 32 µg/mL.

17.
Antibiotics (Basel) ; 12(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136707

RESUMEN

Systemic fungal infections have risen in recent decades and most of them are caused by Candida species, which are becoming increasingly resistant to conventional antifungal drugs. Biofilm production has been considered the most common growth form of Candida cells and is associated with a high level of antifungal resistance. At present, international research reports on the antifungal activity of non-traditional antimicrobial drugs and their potential use against life-threatening resistant fungal infections. Indeed, drug repurposing has led to the consideration of well-known compounds as a last-line therapy. The goal of this work is to evaluate the potential synergistic antifungal biofilm activity of new combinations between diclofenac sodium salt (DSS), a widely used non-steroidal anti-inflammatory drug (NSAID), with the essential oils (EOs) of Mentha piperita, Pelargonium graveolens, and Melaleuca alternifolia, whose antifungal activity has been well documented over the years. The in vitro antifungal activity of DSS and EOs was determined on different Candida strains. Susceptibility testing and the synergism of DSS and EOs versus biofilm cells was performed by using the broth microdilution assay and checkerboard methods. Minimum inhibitory concentrations (sMIC50) of DSS alone ranged from 1.25 to 2.05 mg/mL for all the strains considered. These values significantly decreased when the drug was used in combination with the EOs. The fractional inhibitory concentration index (FICI) was lower than 0.5 for almost all the associations, thus indicating a significant synergism, particularly for the DSS-Pelargonium graveolens combination towards the Candida strains examined. These preliminary results show that the combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains, significantly lowering the concentrations of the components used and thus allowing any toxic effects to be overcome.

18.
Eur J Med Chem ; 259: 115695, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567058

RESUMEN

Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.


Asunto(s)
Enfermedad de Alzheimer , Calcógenos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina , Estructura Molecular , Relación Estructura-Actividad , Receptores de Serotonina/metabolismo , Ligandos , Triazinas/química , Éteres , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Acetilcolinesterasa/metabolismo
19.
Curr Med Chem ; 29(1): 19-40, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34165402

RESUMEN

INTRODUCTION: Thalidomide is an old well-known drug firstly used as morning sickness relief in pregnant women and then withdrawn from the market due to its severe side effects on fetal normal development. However, over the last few decades, the interest in this old drug has been renewed because of its efficacy in several important disorders as, for instance, multiple myeloma, breast cancer, and HIV-related diseases due to its antiangiogenic and immunomodulatory properties. Unfortunately, even in these cases, many after effects as deep vein thrombosis, peripheral neuropathy, constipation, somnolence, pyrexia, pain, and teratogenicity have been reported showing the requirement of careful and monitored use. For this reason, research efforts are geared toward the synthesis and optimization of new thalidomide analogues lacking in toxic effects, able to erase these limits and improve the pharmacological profile. AIMS: This review aims to examine the state-of-the-art concerning the current studies on thalidomide and its analogues towards cancer diseases focusing the attention on the possible mechanisms of action involved and the lack of toxicity. CONCLUSION: In the light of the collected data, thalidomide analogues and their ongoing optimization could lead, in the future, to the realization of a promising therapeutic alternative for fighting cancer.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Enfermedades del Sistema Nervioso Periférico , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Femenino , Humanos , Mieloma Múltiple/tratamiento farmacológico , Embarazo , Talidomida/uso terapéutico
20.
Antibiotics (Basel) ; 11(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740222

RESUMEN

The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many "repurposed drugs" displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA