Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 297(4): 101211, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547292

RESUMEN

Benzylisoquinoline alkaloids (BIAs) are a class of specialized metabolites with a diverse range of chemical structures and physiological effects. Codeine and morphine are two closely related BIAs with particularly useful analgesic properties. The aldo-keto reductase (AKR) codeinone reductase (COR) catalyzes the final and penultimate steps in the biosynthesis of codeine and morphine, respectively, in opium poppy (Papaver somniferum). However, the structural determinants that mediate substrate recognition and catalysis are not well defined. Here, we describe the crystal structure of apo-COR determined to a resolution of 2.4 Å by molecular replacement using chalcone reductase as a search model. Structural comparisons of COR to closely related plant AKRs and more distantly related homologues reveal a novel conformation in the ß1α1 loop adjacent to the BIA-binding pocket. The proximity of this loop to several highly conserved active-site residues and the expected location of the nicotinamide ring of the NADP(H) cofactor suggest a model for BIA recognition that implies roles for several key residues. Using site-directed mutagenesis, we show that substitutions at Met-28 and His-120 of COR lead to changes in AKR activity for the major and minor substrates codeinone and neopinone, respectively. Our findings provide a framework for understanding the molecular basis of substrate recognition in COR and the closely related 1,2-dehydroreticuline reductase responsible for the second half of a stereochemical inversion that initiates the morphine biosynthesis pathway.


Asunto(s)
Bencilisoquinolinas/química , Modelos Moleculares , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/química , Papaver/enzimología , Proteínas de Plantas/química , Bencilisoquinolinas/metabolismo , Cristalografía por Rayos X , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/metabolismo , Proteínas de Plantas/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
2.
Acta Crystallogr D Struct Biol ; 80(Pt 9): 675-685, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207895

RESUMEN

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent ß-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.


Asunto(s)
Disulfuros , Látex , Papaver , Proteínas de Plantas , Papaver/metabolismo , Papaver/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Látex/química , Látex/metabolismo , Cristalografía por Rayos X , Ligandos , Conformación Proteica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Sitios de Unión , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/química , Unión Proteica
3.
Nat Commun ; 13(1): 6768, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351903

RESUMEN

Opium poppy accumulates copious amounts of several benzylisoquinoline alkaloids including morphine, noscapine, and papaverine, in the specialized cytoplasm of laticifers, which compose an internal secretory system associated with phloem throughout the plant. The contiguous latex includes an abundance of related proteins belonging to the pathogenesis-related (PR)10 family known collectively as major latex proteins (MLPs) and representing at least 35% of the total cellular protein content. Two latex MLP/PR10 proteins, thebaine synthase and neopione isomerase, have recently been shown to catalyze late steps in morphine biosynthesis previously assigned as spontaneous reactions. Using a combination of sucrose density-gradient fractionation-coupled proteomics, differential scanning fluorimetry, isothermal titration calorimetry, and X-ray crystallography, we show that the major latex proteins are a family of alkaloid-binding proteins that display altered conformation in the presence of certain ligands. Addition of MLP/PR10 proteins to yeast strains engineered with morphine biosynthetic genes from the plant significantly enhanced the conversion of salutaridine to morphinan alkaloids.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Papaver , Papaver/genética , Papaver/metabolismo , Látex/química , Alcaloides/química , Bencilisoquinolinas/metabolismo , Morfina , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA