RESUMEN
BACKGROUND: Beyond the massive amounts of DNA and genes transferred from the protoorganelle genome to the nucleus during the endosymbiotic event that gave rise to the plastids, stretches of plastid DNA of varying size are still being copied and relocated to the nuclear genome in a process that is ongoing and does not result in the concomitant shrinking of the plastid genome. As a result, plant nuclear genomes feature small, but variable, fraction of their genomes of plastid origin, the so-called nuclear plastid DNA sequences (NUPTs). However, the mechanisms underlying the origin and fixation of NUPTs are not yet fully elucidated and research on the topic has been mostly focused on a limited number of species and of plastid DNA. RESULTS: Here, we leveraged a chromosome-scale version of the genome of the orphan crop Moringa oleifera, which features the largest fraction of plastid DNA in any plant nuclear genome known so far, to gain insights into the mechanisms of origin of NUPTs. For this purpose, we examined the chromosomal distribution and arrangement of NUPTs, we explicitly modeled and tested the correlation between their age and size distribution, we characterized their sites of origin at the chloroplast genome and their sites of insertion at the nuclear one, as well as we investigated their arrangement in clusters. We found a bimodal distribution of NUPT relative ages, which implies NUPTs in moringa were formed through two separate events. Furthermore, NUPTs from every event showed markedly distinctive features, suggesting they originated through distinct mechanisms. CONCLUSIONS: Our results reveal an unanticipated complexity of the mechanisms at the origin of NUPTs and of the evolutionary forces behind their fixation and highlight moringa species as an exceptional model to assess the impact of plastid DNA in the evolution of the architecture and function of plant nuclear genomes.
Asunto(s)
Genoma de Plastidios , Moringa oleifera , Moringa oleifera/genética , Evolución Molecular , Plastidios/genética , Genoma de Planta , ADN de Plantas/genética , Plantas/genética , Núcleo Celular/genéticaRESUMEN
BACKGROUND: Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS: In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS: Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.
Asunto(s)
Genoma de Planta , Moringa oleifera , Moringa oleifera/genética , Plastidios/genética , Núcleo Celular/genética , Productos Agrícolas/genética , Evolución Molecular , ARN de Planta/genética , ADN de Plantas/genética , Genes de PlantasRESUMEN
BACKGROUND: Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS: SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS: Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.
Asunto(s)
Arabidopsis , Eriobotrya , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that â¼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.
Asunto(s)
Colletotrichum/fisiología , ADN Intergénico , Introgresión Genética , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Enfermedades de las Plantas , Duplicación de Gen , Magnoliopsida/genética , Magnoliopsida/microbiología , Persea/genética , Persea/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
In several organisms, particular functional categories of genes, such as regulatory and complex-forming genes, are preferentially retained after whole-genome multiplications but rarely duplicate through small-scale duplication, a pattern referred to as reciprocal retention. This peculiar duplication behavior is hypothesized to stem from constraints on the dosage balance between the genes concerned and their interaction context. However, the evidence for a relationship between reciprocal retention and dosage balance sensitivity remains fragmentary. Here, we identified which gene families are most strongly reciprocally retained in the angiosperm lineage and studied their functional and evolutionary characteristics. Reciprocally retained gene families exhibit stronger sequence divergence constraints and lower rates of functional and expression divergence than other gene families, suggesting that dosage balance sensitivity is a general characteristic of reciprocally retained genes. Gene families functioning in regulatory and signaling processes are much more strongly represented at the top of the reciprocal retention ranking than those functioning in multiprotein complexes, suggesting that regulatory imbalances may lead to stronger fitness effects than classical stoichiometric protein complex imbalances. Finally, reciprocally retained duplicates are often subject to dosage balance constraints for prolonged evolutionary times, which may have repercussions for the ease with which genome multiplications can engender evolutionary innovation.
Asunto(s)
Dosificación de Gen , Duplicación de Gen , Genes Duplicados/genética , Genes de Plantas/genética , Magnoliopsida/genética , Evolución Molecular , Genoma de Planta/genética , Magnoliopsida/clasificación , Modelos Genéticos , Filogenia , Especificidad de la EspecieRESUMEN
It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.
Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Magnoliopsida/genética , ADN Intergénico/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenía/genética , Vitis/genéticaRESUMEN
Biological systems remain robust against certain genetic and environmental challenges. Robustness allows the exploration of ecological adaptations. It is unclear what factors contribute to increasing robustness. Gene duplication has been considered to increase genetic robustness through functional redundancy, accelerating the evolution of novel functions. However, recent findings have questioned the link between duplication and robustness. In particular, it remains elusive whether ancient duplicates still bear potential for innovation through preserved redundancy and robustness. Here we have investigated this question by evolving the yeast Saccharomyces cerevisiae for 2200 generations under conditions allowing the accumulation of deleterious mutations, and we put mechanisms of mutational robustness to a test. S. cerevisiae declined in fitness along the evolution experiment, but this decline decelerated in later passages, suggesting functional compensation of mutated genes. We resequenced 28 genomes from experimentally evolved S. cerevisiae lines and found more mutations in duplicates--mainly small-scale duplicates--than in singletons. Genetically interacting duplicates evolved similarly and fixed more amino acid-replacing mutations than expected. Regulatory robustness of the duplicates was supported by a larger enrichment for mutations at the promoters of duplicates than at those of singletons. Analyses of yeast gene expression conditions showed a larger variation in the duplicates' expression than that of singletons under a range of stress conditions, sparking the idea that regulatory robustness allowed a wider range of phenotypic responses to environmental stresses, hence faster adaptations. Our data support the persistence of genetic and regulatory robustness in ancient duplicates and its role in adaptations to stresses.
Asunto(s)
Adaptación Fisiológica/genética , Duplicación de Gen , Mutación , Saccharomyces cerevisiae/genética , Algoritmos , Cromosomas Fúngicos/genética , Análisis Mutacional de ADN , Evolución Molecular Dirigida , Genes Fúngicos/genética , Genoma Fúngico/genética , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Estrés Fisiológico/genéticaRESUMEN
Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.
Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Lamiales/genética , Carnivoría , Genoma de Planta , Lamiales/fisiología , Familia de Multigenes/genética , FilogeniaRESUMEN
Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent than WGD-duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication.
Asunto(s)
Evolución Molecular , Duplicación de Gen , Saccharomyces cerevisiae/genética , Genoma Fúngico , FilogeniaAsunto(s)
Evolución Biológica , Duplicación de Gen , Evolución Molecular , Genoma , Genoma de Planta/genética , Humanos , PoliploidíaRESUMEN
The ubiquitous and conserved cytosolic heat-shock proteins 90 (HSP90A) perform essential functions in the cell. To understand the evolutionary origin of HSP90A functional diversification, we analyzed the distribution of HSP90A family from 54 species representing the main eukaryotic lineages. Three independent HSP90A duplications led to the paralog subfamilies HSP90AA (heat-stress inducible) and HSP90AB (constitutive) and trace back to key time points during vertebrate, seed plant, and yeast evolution. HSP90AA and HSP90AB present divergent selection pressures, positive selection (PS), and signatures of functional divergence (FD) after duplication. The differential evolutionary patterns support different mechanisms for HSP90A functional diversification in vertebrates and seed plants. Mapping of PS and FD residues onto the HSP90A structure suggests the acquisition of novel and/or specialized client protein and/or cochaperone binding functions. We propose these residues as targets for further experimental studies of HSP90A proteins, reported to be capacitors of rapid evolutionary change, and targets for anticancer therapeutics.
Asunto(s)
Citosol/metabolismo , Células Eucariotas/metabolismo , Evolución Molecular , Proteínas HSP90 de Choque Térmico/clasificación , Filogenia , Animales , Células Eucariotas/citología , Duplicación de Gen , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Modelos Genéticos , Modelos Moleculares , Plantas/metabolismo , Semillas/metabolismo , Selección Genética , Vertebrados/metabolismo , Levaduras/metabolismoRESUMEN
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , FitomejoramientoRESUMEN
RESULTS: We measure the simultaneous dynamics of duplicate orthologous gene loss in rosids, in asterids, and in monocots, as influenced by biological functional class. This pan-angiosperm view confirms common tendencies and consistency through time for both ancient and more recent whole genome polyploidization events. CONCLUSIONS: The gene loss analysis represents an assessment of post-polyploidization evolution, at the level of individual gene families within and across sister genomes. Functional analysis confirms universal trends previously reported for more recent plant polyploidy events: genes involved with regulation and responses were retained in multiple copies, while genes involved with metabolic and catalytic processes tended to lose copies, across all three groups of plants.To understand the particular evolutionary patterns of plant genomes, there is a need to systematically survey the fate of the subgenomes of polyploids fixed as whole genome duplicates, including patterns of retention of duplicate, triplicate, etc. genes.
Asunto(s)
Genes de Plantas , Plantas/genética , Poliploidía , Evolución Molecular , Duplicación de Gen , Genoma de PlantaRESUMEN
BACKGROUND: Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II). RESULTS: Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). By performing a thorough comparative sequence analysis of GC content, 3:1 dinucleotide frequencies, codon usage and codon adaptation indexes (CAI) between DXR-II sequences and their corresponding genomes, we examined the role of horizontal gene transfer (HGT), as opposed to an scenario of massive gene loss, in the evolutionary origin and diversification of the DXR-II subfamily in bacteria. CONCLUSIONS: Our analyses support a single origin of the DXR-II family through functional divergence, in which constitutes an exceptional model of acquisition and maintenance of redundant gene functions between non-homologous genes as a result of convergent evolution. Subsequently, although old episodic events of HGT could not be excluded, the results supported a prevalent role of gene loss in explaining the distribution of DXR-II in specific pathogenic eubacteria. Our results highlight the importance of the functional characterization of evolutionary shortcuts in isoprenoid biosynthesis for screening specific antibacterial drugs and for regulating the production of isoprenoids of human interest.
Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Bacterias/enzimología , Bacterias/genética , Evolución Molecular , Filogenia , Terpenos/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Evolución Biológica , Transferencia de Gen Horizontal , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismoRESUMEN
Gene duplicates are a major source of evolutionary novelties in the form of new or specialized functions and play a key role in speciation. Gene duplicates are generated through whole genome duplications (WGD) or small-scale genome duplications (SSD). Although WGD preserves the stoichiometric relationships between duplicates, those arising from SSD are usually unbalanced and are expected to follow different evolutionary dynamics than those formed by WGD. To dissect the role of the mechanism of duplication in these differential dynamics and determine whether this role was shared across species, we performed a genome wide evolutionary analysis of gene duplications arising from the most recent WGD events and contemporary episodes of SSD in four model species representing distinct plant evolutionary lineages. We found an excess of relaxed purifying selection after duplication in SSD paralogs compared with WGD, most of which may have been the result of functional divergence events between gene copies as estimated by measures of genetic distances. These differences were significant in three angiosperm genomes but not in the moss species Physcomitrella patens. Although the comparison of models of evolution does not attribute a relevant role to the mechanism of duplication in the evolution duplicates, distribution of retained genes among Gene Ontology functional categories support the conclusion that evolution of gene duplicates depends on its origin of duplication (WGD and SSD) but, most importantly, on the species. Similar lineage-specific biases were also observed in protein network connectivity, translational efficiency, and selective constraints acting on synonymous codon usage. Although the mechanism of duplication may determine gene retention, our results attribute a dominant role to the species in determining the ultimate pattern of duplicate gene retention and reveal an unanticipated complexity in the evolutionary dynamics and functional specialization of duplicated genes in plants.
Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Genoma de Planta/genética , Plantas/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Bases , Análisis por Conglomerados , Codón/genética , Variación Genética , Modelos Genéticos , Filogenia , Biosíntesis de Proteínas/genética , Mapas de Interacción de Proteínas , Selección Genética , Especificidad de la EspecieRESUMEN
Isoprenoids are a large family of compounds with essential functions in all domains of life. Most eubacteria synthesize their isoprenoids using the methylerythritol 4-phosphate (MEP) pathway, whereas a minority uses the unrelated mevalonate pathway and only a few have both. Interestingly, Brucella abortus and some other bacteria that only use the MEP pathway lack deoxyxylulose 5-phosphate (DXP) reductoisomerase (DXR), the enzyme catalyzing the NADPH-dependent production of MEP from DXP in the first committed step of the pathway. Fosmidomycin, a specific competitive inhibitor of DXR, inhibited growth of B. abortus cells expressing the Escherichia coli GlpT transporter (required for fosmidomycin uptake), confirming that a DXR-like (DRL) activity exists in these bacteria. The B. abortus DRL protein was found to belong to a family of uncharacterized proteins similar to homoserine dehydrogenase. Subsequent experiments confirmed that DRL and DXR catalyze the same biochemical reaction. DRL homologues shown to complement a DXR-deficient E. coli strain grouped within the same phylogenetic clade. The scattered taxonomic distribution of sequences from the DRL clade and the occurrence of several paralogues in some bacterial strains might be the result of lateral gene transfer and lineage-specific gene duplications and/or losses, similar to that described for typical mevalonate and MEP pathway genes. These results reveal the existence of a novel class of oxidoreductases catalyzing the conversion of DXP into MEP in prokaryotic cells, underscoring the biochemical and genetic plasticity achieved by bacteria to synthesize essential compounds such as isoprenoids.
Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Bacterias/metabolismo , Eritritol/análogos & derivados , Redes y Vías Metabólicas , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Fosfatos de Azúcar/metabolismo , Terpenos/metabolismo , Enzimas , Eritritol/metabolismo , Pentosafosfatos/metabolismoRESUMEN
The African Orphan Crops Consortium (AOCC) selected the highly nutritious, fast growing and drought tolerant tree crop moringa (Moringa oleifera Lam.) as one of the first of 101 plant species to have its genome sequenced and a first draft assembly was published in 2019. Given the extensive uses and culture of moringa, often referred to as the multipurpose tree, we generated a significantly improved new version of the genome based on long-read sequencing into 14 pseudochromosomes equivalent to n = 14 haploid chromosomes. We leveraged this nearly complete version of the moringa genome to investigate main drivers of gene family and genome evolution that may be at the origin of relevant biological innovations including agronomical favorable traits. Our results reveal that moringa has not undergone any additional whole-genome duplication (WGD) or polyploidy event beyond the gamma WGD shared by all core eudicots. Moringa duplicates retained following that ancient gamma events are also enriched for functions commonly considered as dosage balance sensitive. Furthermore, tandem duplications seem to have played a prominent role in the evolution of specific secondary metabolism pathways including those involved in the biosynthesis of bioactive glucosinolate, flavonoid, and alkaloid compounds as well as of defense response pathways and might, at least partially, explain the outstanding phenotypic plasticity attributed to this species. This study provides a genetic roadmap to guide future breeding programs in moringa, especially those aimed at improving secondary metabolism related traits.
Asunto(s)
Moringa oleifera , Cromosomas , Flavonoides , Genoma de Planta , Glucosinolatos , Moringa oleifera/genética , Fitomejoramiento , Poliploidía , Metabolismo SecundarioRESUMEN
Plants sense the presence of potentially competing nearby individuals as a reduction in the red to far-red ratio of the incoming light. In anticipation of eventual shading, a set of plant responses known as the shade avoidance syndrome (SAS) is initiated soon after detection of this signal by the phytochrome photoreceptors. Here we analyze the function of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2, two Arabidopsis thaliana genes rapidly upregulated after simulated shade perception. These genes encode two closely related atypical basic helix-loop-helix proteins with no previously assigned function in plant development. Using reverse genetic approaches, we show that PAR1 and PAR2 act in the nucleus to broadly control plant development, acting as negative regulators of a variety of SAS responses, including seedling elongation and photosynthetic pigment accumulation. Molecularly, PAR1 and PAR2 act as direct transcriptional repressors of two auxin-responsive genes, SMALL AUXIN UPREGULATED15 (SAUR15) and SAUR68. Additional results support that PAR1 and PAR2 function in integrating shade and hormone transcriptional networks, rapidly connecting phytochrome-sensed light changes with auxin responsiveness.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Luz Solar , Ácido 2,4-Diclorofenoxiacético/farmacología , Adaptación Biológica , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cicloheximida/farmacología , ADN de Plantas/genética , Dexametasona/farmacología , Glucocorticoides/farmacología , Herbicidas/farmacología , Ácidos Indolacéticos/metabolismo , Datos de Secuencia Molecular , Fenotipo , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Análisis de Secuencia de ADNRESUMEN
Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified. We present here an updated and comprehensive classification of the bHLHs encoded by the whole sequenced genomes of Arabidopsis (Arabidopsis thaliana), Populus trichocarpa, Oryza sativa, Physcomitrella patens, and five algae species. We define a plant bHLH consensus motif, which allowed the identification of novel highly diverged atypical bHLHs. Using yeast two-hybrid assays, we confirm that (1) a highly diverged bHLH has retained protein interaction activity and (2) the two most conserved positions in the consensus play an essential role in dimerization. Phylogenetic analysis permitted classification of the 638 bHLH genes identified into 32 subfamilies. Evolutionary and functional relationships within subfamilies are supported by intron patterns, predicted DNA-binding motifs, and the architecture of conserved protein motifs. Our analyses reveal the origin and evolutionary diversification of plant bHLHs through differential expansions, domain shuffling, and extensive sequence divergence. At the functional level, this would translate into different subfamilies evolving specific DNA-binding and protein interaction activities as well as differential transcriptional regulatory roles. Our results suggest a role for bHLH proteins in generating plant phenotypic diversity and provide a solid framework for further investigations into the role carried out in the transcriptional regulation of key growth and developmental processes.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Molecular , Genoma de Planta/genética , Familia de Multigenes/genética , Plantas/genética , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bryopsida/genética , Secuencia de Consenso/genética , ADN de Plantas/genética , Eucariontes/genética , Intrones/genética , Datos de Secuencia Molecular , Oryza/genética , Filogenia , Populus/genética , Multimerización de Proteína , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos HíbridosRESUMEN
In all eukaryotes, the typical CK2 holoenzyme is an heterotetramer composed of two catalytic (CK2α and CK2α') and two regulatory (CK2ß) subunits. One of the distinctive traits of plant CK2 is that they present a greater number of genes encoding for CK2α/ß subunits than animals or yeasts, for instance, in Arabidopsis and maize both CK2α/ß subunits belong to multigenic families composed by up to four genes. Here, we conducted a genome-wide survey examining 34 different plant genomes in order to investigate if the multigenic property of CK2ß genes is a common feature through the entire plant kingdom. Also, at the level of structure, the plant CK2ß regulatory subunits present distinctive features as (i) they lack about 20 aminoacids in the C-terminal domain, (ii) they present a specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain, and (iii) the acidic loop region is poorly conserved at the aminoacid level. Since there is no data about CK2ß or holoenzyme structure in plants, in this study, we use human CK2ß as a template to predict a structure for Zea mays CK2ß1 by homology modeling and we discuss about possible structural changes in the acidic loop region that could affect the enzyme regulation.