RESUMEN
The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.
Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteínas de Unión a Poli(A) , Animales , Proteínas de Unión a Poli(A)/genética , Neuronas , Encéfalo , MamíferosRESUMEN
The invariant carboxylate residue which follows the Walker B motif (hyd(4)DE/D) in the nucleotide-binding domains (NBDs) of ATP-binding cassette transporters is thought to be involved in the hydrolysis of the gamma-phosphate of MgATP, either by activating the attacking water molecule or by promoting substrate-assisted catalysis. In Abcb1a, this invariant carboxylate residue corresponds to E552 in NBD1 and E1197 in NBD2. To further characterize the role of these residues in catalysis, we created in Abcb1a the single-site mutants E552D, N and A in NBD1, and E1197D, N and A in NBD2, as well as the double-mutant E552Q/E1197Q. In addition, we created mutants in which the Walker A K --> R mutation known to abolish ATPase activity was introduced in the non-mutant NBD of E552Q and E1197Q. ATPase activity, binding affinity and trapping properties were tested for each Abcb1a variant. The results suggest that the length of the invariant carboxylate residue is important for the catalytic activity, whereas the charge of the side chain is critical for full turnover to occur. Moreover, in the double-mutants where the K --> R mutation is introduced in the 'wild-type' NBD of the E --> Q mutants, single-site turnover is observed, especially when NBD2 can undergo gamma-P(i) cleavage. The results further support the idea that the NBDs are not symmetric and suggest that the invariant carboxylates are involved both in NBD-NBD communication and transition-state formation through orientation of the linchpin residue.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/química , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Dimerización , Escherichia coli/metabolismo , Lípidos/química , Ratones , Modelos Biológicos , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Agua/químicaRESUMEN
The A-loop is a recently described conserved region in the NBDs of ABC transporters [Ambudkar, S.V., Kim, I.-W., Xia, D. and Sauna, Z.E. (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580, 1049-1055; Kim, I.W., Peng, X.H., Sauna, Z.E., FitzGerald, P.C., Xia, D., Muller, M., Nandigama, K. and Ambudkar, S.V. (2006) The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette. Biochemistry 45, 7605-7616]. In mouse P-glycoprotein (Abcb1a), the aromatic residue of the A-loop in both NBDs is a tyrosine: Y397 in NBD1 and Y1040 in NBD2. Another tyrosine residue (618 in NBD1 and 1263 in NBD2) also appears to lie in proximity to the ATP molecule. We have mutated residues Y397, Y618, Y1040, and Y1263 to tryptophan and analyzed the effect of these substitutions on transport properties, ATP binding, and ATP hydrolysis by Abcb1a (mouse Mdr3). Y618W and Y1263W enzymes had catalytic characteristics similar to WT Abcb1a. On the other hand, Y397W and Y1040W showed impaired transport and greatly reduced ATPase activity, including a approximately 10-fold increase in Km for MgATP. Thus, Y397 and Y1040 play an important role in Abcb1a catalysis.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos Aromáticos , Animales , Catálisis , Secuencia Conservada , Análisis Mutacional de ADN , Ratones , Datos de Secuencia Molecular , Fotoquímica , Tirosina/química , Tirosina/genéticaRESUMEN
In the nucleotide-binding domains (NBDs) of ABC transporters, such as mouse Mdr3 P-glycoprotein (P-gp), an invariant carboxylate residue (E552 in NBD1; E1197 in NBD2) immediately follows the Walker B motif (hyd(4)DE/D). Removal of the negative charge in mutants E552Q and E1197Q abolishes drug-stimulated ATPase activity measured by P(i) release. Surprisingly, drug-stimulated trapping of 8-azido-[alpha-(32)P]ATP is still observed in the mutants in both the presence and absence of the transition-state analogue vanadate (V(i)), and ADP can be recovered from the trapped enzymes. The E552Q and E1197Q mutants show characteristics similar to those of the wild-type (WT) enzyme with respect to 8-azido-[alpha-(32)P]ATP binding and 8-azido-[alpha-(32)P]nucleotide trapping, with the latter being both Mg(2+) and temperature dependent. Importantly, drug-stimulated nucleotide trapping in E552Q is stimulated by V(i) and resembles the WT enzyme, while it is almost completely V(i) insensitive in E1197Q. Similar nucleotide trapping properties are observed when aluminum fluoride or beryllium fluoride is used as an alternate transition-state analogue. Partial proteolytic cleavage of photolabeled enzymes indicates that, in the absence of V(i), nucleotide trapping occurs exclusively at the mutant NBD, whereas in the presence of V(i), nucleotide trapping occurs at both NBDs. Together, these results suggest that there is single-site turnover occurring in the E552Q and E1197Q mutants and that ADP release from the mutant site, or another catalytic step, is impaired in these mutants. Furthermore, our results support a model in which the two NBDs of P-gp are not functionally equivalent.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Ácidos Carboxílicos/química , Proteínas de Unión al GTP/química , Mutagénesis Sitio-Dirigida , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/química , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Animales , Catálisis , Resistencia a Múltiples Medicamentos/genética , Proteínas de Unión al GTP/genética , Ácido Glutámico/genética , Glutamina/genética , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular , Ratones , Estructura Terciaria de Proteína/genéticaRESUMEN
The dynamic changes occurring during the catalytic cycle of MDR3 P-glycoprotein (Pgp) and the role of each nucleotide-binding domain (NBD) in the transport process were investigated using attenuated total reflection Fourier transform infrared spectroscopy. For this purpose, wild-type Pgp and two mutations of homologous residues in each NBD were studied. On the one hand, we demonstrate here that, during its catalytic cycle, Pgp does not undergo secondary structure changes, but only modifications in its stability and accessibility to the external environment. On the other hand, amide H/D exchange kinetics demonstrate that homologous mutations in the two NBDs affect, in a different way, the dynamic properties of Pgp and also the dynamic changes occurring during ATP hydrolysis. These observations led to the conclusion that the NBDs have an asymmetric structure and different functions in the catalytic cycle of Pgp. Our data suggest that the release of drug from the membrane into the extracellular environment is due to decreased stability and/or increased accessibility to the external medium of the membrane-embedded drug-binding site(s). NBD1 would play an important role in this first restructuring of the membrane-embedded domains. NBD2 would be directly implicated in the subsequent restructuring of the membrane-embedded binding sites by which they recover their initial stability and accessibility to the membrane. It is proposed that this restructuring step would allow the binding and transport of another molecule of substrate.