Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 137(4): 672-84, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450515

RESUMEN

Chromosome segregation requires assembly of kinetochores on centromeric chromatin to mediate interactions with spindle microtubules and control cell-cycle progression. To elucidate the protein architecture of human kinetochores, we developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at <5 nm accuracy. Delta analysis of 16 proteins representing core structural complexes spanning the centromeric chromatin-microtubule interface, when correlated with mechanical states of spindle-attached kinetochores, provided a nanometer-scale map of protein position and mechanical properties of protein linkages. Treatment with taxol, which suppresses microtubule dynamics and activates the spindle checkpoint, revealed a specific switch in kinetochore architecture. Cumulatively, Delta analysis revealed that compliant linkages are restricted to the proximity of chromatin, suggested a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and identified an intrakinetochore molecular switch that may function in controlling checkpoint activity.


Asunto(s)
Cinetocoros/química , Cinetocoros/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Metafase , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares
2.
J Cell Sci ; 130(13): 2111-2118, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576971

RESUMEN

The complex comprising serum response factor (SRF) and megakaryoblastic leukemia 1 protein (Mkl1) promotes myofibroblast differentiation during wound healing. SRF-Mkl1 is sensitive to the mechanical properties of the extracellular environment; but how cells sense and transduce mechanical cues to modulate SRF-Mkl1-dependent gene expression is not well understood. Here, we demonstrate that the nuclear lamina-associated inner nuclear membrane protein Emerin stimulates SRF-Mkl1-dependent gene activity in a substrate stiffness-dependent manner. Specifically, Emerin was required for Mkl1 nuclear accumulation and maximal SRF-Mkl1-dependent gene expression in response to serum stimulation of cells grown on stiff substrates but was dispensable on more compliant substrates. Focal adhesion area was also reduced in cells lacking Emerin, consistent with a role for Emerin in sensing substrate stiffness. Expression of a constitutively active form of Mkl1 bypassed the requirement for Emerin in SRF-Mkl1-dependent gene expression and reversed the focal adhesion defects evident in EmdKO fibroblasts. Together, these data indicate that Emerin, a conserved nuclear lamina protein, couples extracellular matrix mechanics and SRF-Mkl1-dependent transcription.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Factor de Respuesta Sérica/genética , Transactivadores/genética , Cicatrización de Heridas/genética , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Adhesiones Focales/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Noqueados , Miofibroblastos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Lámina Nuclear/genética , Transducción de Señal/genética
3.
Nature ; 477(7364): 354-8, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21874020

RESUMEN

During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.


Asunto(s)
Centrómero/metabolismo , Cromatina/química , Cromatina/metabolismo , Cinetocoros/metabolismo , Animales , Autoantígenos/química , Autoantígenos/metabolismo , Extractos Celulares , Sistema Libre de Células , Proteína A Centromérica , Cromatina/genética , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Secuencia Conservada , Histonas/metabolismo , Humanos , Microtúbulos/metabolismo , Mitosis , Oocitos , Estructura Terciaria de Proteína , Moldes Genéticos , Xenopus laevis
4.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22100916

RESUMEN

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Asunto(s)
Ciclo Celular , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Línea Celular , Centrómero/genética , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Humanos , Unión Proteica
5.
J Cell Biol ; 176(6): 735-6, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17339381

RESUMEN

Centromeric nucleosomes contain a histone H3 variant called centromere protein A (CENP-A) that is required for kinetochore assembly and chromosome segregation. Two new studies, Jansen et al. (see p. 795 of this issue) and Maddox et al. (see p. 757 of this issue), address when CENP-A is deposited at centromeres during the cell division cycle and identify an evolutionally conserved protein required for CENP-A deposition. Together, these studies advance our understanding of centromeric chromatin assembly and provide a framework for investigating the molecular mechanisms that underlie the centromere-specific loading of CENP-A.


Asunto(s)
Autoantígenos/metabolismo , Caenorhabditis elegans/genética , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Animales , Autoantígenos/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Fase G1 , Genómica , Histonas/metabolismo , Mitosis , Modelos Genéticos
6.
Trends Cell Biol ; 16(2): 70-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16412639

RESUMEN

This review is part of the Chromosome segregation and Aneuploidy series that focuses on the importance of chromosome segregation mechanisms in maintaining genome stability. Centromeres are specialized chromosomal domains that serve as the foundation for the mitotic kinetochore, the interaction site between the chromosome and the mitotic spindle. The chromatin of centromeres is distinguished from other chromosomal loci by the unique incorporation of the centromeric histone H3 variant, centromere protein A. Here, we review the genetic and epigenetic factors that control the formation and maintenance of centromeric chromatin and propose a chromatin self-assembly model for organizing the higher-order structure of the centromere.


Asunto(s)
Centrómero/fisiología , Cromatina/fisiología , Segregación Cromosómica , Epigénesis Genética , Animales , Centrómero/química , Cromatina/química , Inestabilidad Genómica , Humanos , Modelos Biológicos
7.
Nat Cell Biol ; 4(11): 880-7, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12402045

RESUMEN

Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Cinética , Modelos Biológicos , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Factores de Tiempo , Ubiquitina/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/química
8.
Methods Mol Biol ; 2365: 283-300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34432250

RESUMEN

Targeted protein degradation is garnering increased attention as a therapeutic modality due in part to its promise of modulating targets previously considered undruggable. Cereblon E3 Ligase Modulating Drugs (CELMoDs) are one of the most well-characterized therapeutics employing this modality. CELMoDs hijack Cereblon E3 ligase activity causing neosubstrates to be ubiquitinated and degraded in the proteasome. Here, we describe a suite of assays-cellular substrate degradation, confirmation of CELMoD mechanism of action, in vitro ubiquitination, and Cereblon binding-that can be used to characterize CELMoD-mediated degradation of Cereblon neosubstrates. While the assays presented herein can be run independently, when combined they provide a strong platform to support the discovery and optimization of CELMoDs and fuel validation of targets degraded by this drug modality.


Asunto(s)
Nanoestructuras , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Small GTPases ; 10(6): 433-440, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-28586283

RESUMEN

Actin-dependent forces mechanically control both the position and shape of the nucleus. While the mechanisms that establish nuclear position are well defined, less understood is how actin filaments determine nuclear shape. We recently showed that nuclear envelope-spanning LINC complexes promote stress fiber assembly by activating the small GTPase RhoA and Mkl1-dependent gene activation. We now report that a subset of these stress fibers associate with the apical face of the nuclear envelope through LINC complexes that contain the inner nuclear membrane protein Sun2. Apical stress fibers have previously been shown to specifically couple cell and nuclear morphology, suggesting that LINC complexes influence nuclear shape in part by regulating the small GTPase RhoA.


Asunto(s)
Actinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Transactivadores , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Transactivadores/genética , Transactivadores/metabolismo
10.
Curr Biol ; 15(1): 11-8, 2005 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-15649358

RESUMEN

BACKGROUND: Accurate chromosome segregation during mitosis requires the coordinated destruction of the mitotic regulators securin and cyclins. The anaphase-promoting complex (APC) is a multisubunit ubiquitin-protein ligase that catalyzes the polyubiquitination of these and other proteins and thereby promotes their destruction. How the APC recognizes its substrates is not well understood. In mitosis, the APC activator Cdc20 binds to the APC and is thought to recruit substrates by interacting with a conserved target protein motif called the destruction box. A related protein, called Cdh1, performs a similar function during G1. Recent evidence, however, suggests that the core APC subunit Doc1 also contributes to substrate recognition. RESULTS: To better understand the mechanism by which Doc1 promotes substrate binding to the APC, we generated a series of point mutations in Doc1 and analyzed their effects on the processivity of substrate ubiquitination. Mutations that reduce Doc1 function fall into two classes that define spatially and functionally distinct regions of the protein. One region, which includes the carboxy terminus, anchors Doc1 to the APC but does not influence substrate recognition. The other region, located on the opposite face of Doc1, is required for Doc1 to enhance substrate binding to the APC. Importantly, stimulation of binding by Doc1 also requires that the substrate contain an intact destruction box. Cells carrying DOC1 mutations that eliminate substrate recognition delay in mitosis with high levels of APC substrates. CONCLUSIONS: Doc1 contributes to recognition of the substrate destruction box by the APC. This function of Doc1 is necessary for efficient substrate proteolysis in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Ciclinas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Indoles , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/metabolismo , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Securina , Complejos de Ubiquitina-Proteína Ligasa/fisiología
11.
PLoS One ; 13(5): e0197621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29813079

RESUMEN

LInkers of Nucleoskeleton and Cytoskeleton (LINC) complexes, composed of SUN and KASH-domain proteins, span the nuclear envelope and physically connect the nuclear interior to cytoskeletal elements. Most human cells contain two SUN proteins, Sun1 and Sun2, and several KASH-proteins suggesting that multiple functionally distinct LINC complexes co-exist in the nuclear envelope. We show here, however, that while Sun1 and Sun2 in HeLa cells are each able to bind KASH-domains, Sun1 is more efficiently incorporated into LINC complexes under normal growth conditions. Furthermore, the balance of Sun1 and Sun2 incorporated into LINC complexes is cell type-specific and is correlated with SRF/Mkl1-dependent gene expression. In addition, we found that Sun1 has a LINC complex-independent role in transcriptional control, possibly by regulating the SRF/Mkl1 pathway. Together, these data reveal novel insights into the mechanisms of LINC complex regulation and demonstrate that Sun1 modulates gene expression independently of its incorporation into LINC complexes.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Expresión Génica , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios Proteicos , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/metabolismo
12.
Mol Biol Cell ; 28(1): 182-191, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035049

RESUMEN

Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes span the nuclear envelope and transduce force from dynamic cytoskeletal networks to the nuclear lamina. Here we show that LINC complexes also signal from the nuclear envelope to critical regulators of the actin cytoskeleton. Specifically, we find that LINC complexes that contain the inner nuclear membrane protein Sun2 promote focal adhesion assembly by activating the small GTPase RhoA. A key effector in this process is the transcription factor/coactivator complex composed of SRF/Mkl1. A constitutively active form of SRF/Mkl1 was not sufficient to induce focal adhesion assembly in cells lacking Sun2, however, suggesting that LINC complexes support RhoA activity through a transcription-independent mechanism. Strikingly, we also find that the inner nuclear membrane protein Sun1 antagonizes Sun2 LINC complexes and inhibits RhoA activation and focal adhesion assembly. Thus different LINC complexes have opposing roles in the transcription-independent control of the actin cytoskeleton through the small GTPase RhoA.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Células HeLa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo , Proteínas Nucleares/fisiología , Factor de Respuesta Sérica , Transactivadores , Proteína de Unión al GTP rhoA/metabolismo
13.
Nat Commun ; 7: 13465, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811920

RESUMEN

Centromeres are specified epigenetically through the deposition of the centromere-specific histone H3 variant CENP-A. However, how additional epigenetic features are involved in centromere specification is unknown. Here, we find that histone H4 Lys5 and Lys12 acetylation (H4K5ac and H4K12ac) primarily occur within the pre-nucleosomal CENP-A-H4-HJURP (CENP-A chaperone) complex, before centromere deposition. We show that H4K5ac and H4K12ac are mediated by the RbAp46/48-Hat1 complex and that RbAp48-deficient DT40 cells fail to recruit HJURP to centromeres and do not incorporate new CENP-A at centromeres. However, C-terminally-truncated HJURP, that does not bind CENP-A, does localize to centromeres in RbAp48-deficient cells. Acetylation-dead H4 mutations cause mis-localization of the CENP-A-H4 complex to non-centromeric chromatin. Crucially, CENP-A with acetylation-mimetic H4 was assembled specifically into centromeres even in RbAp48-deficient DT40 cells. We conclude that H4K5ac and H4K12ac, mediated by RbAp46/48, facilitates efficient CENP-A deposition into centromeres.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Centrómero/genética , Proteína A Centromérica/genética , Pollos , Cromatina/metabolismo , Epigénesis Genética , Histonas/genética , Humanos , Lisina/metabolismo , Chaperonas Moleculares/genética , Mutación , Nucleosomas/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteína 7 de Unión a Retinoblastoma/metabolismo
14.
Methods Enzymol ; 398: 219-30, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16275331

RESUMEN

The anaphase-promoting complex (APC) is an ubiquitin-protein ligase that promotes mitotic progression by catalyzing the ubiquitination of numerous proteins, including securin and cyclin. Its complex subunit composition and extensive regulation make the APC an active subject of investigation for both cell biologists and enzymologists. This chapter describes a system for the reconstitution and quantitative analysis of APC activity from budding yeast in vitro. We focus in particular on the measurement of processive ubiquitination, which complements traditional analysis of the reaction rate as a means to elucidate the molecular details of substrate recognition and ubiquitination by the APC.


Asunto(s)
Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Baculoviridae , Cadherinas/biosíntesis , Cadherinas/genética , Cadherinas/aislamiento & purificación , Línea Celular , Clonación Molecular/métodos , Ciclina B/aislamiento & purificación , Ciclina B/metabolismo , Vectores Genéticos , Radioisótopos de Yodo , Péptidos/aislamiento & purificación , Erizos de Mar , Yoduro de Sodio , Spodoptera , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/aislamiento & purificación
15.
Biochem Mol Biol Educ ; 42(6): 486-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25331587

RESUMEN

This adaptable graduate laboratory course on protein purification offers students the opportunity to explore a wide range of techniques while allowing the instructor the freedom to incorporate their own personal research interests. The course design involves two sequential purification schemes performed in a single semester. The first part comprises the expression and purification of a recombinant GFP-binding protein from E. coli. The student-purified GFP-binding protein is then used in the second part of the course to immunoprecipitate GFP-tagged proteins, and their potential interacting partners, from cell or tissue extracts. As an example, we describe the immunoprecipitation of GFP-tagged proteins from Drosophila melanogaster larval extracts that are homologous to proteins implicated in human diseases, followed by western blotting to examine student experimental outcomes. However, the widespread availability of GFP-fusion proteins in diverse organisms enables researchers to tailor the second part of the course to their specific research programs while maintaining the flexibility to engage students in active learning. Student evaluations indicate a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them.


Asunto(s)
Curriculum , Educación de Postgrado/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Western Blotting , Humanos , Inmunoprecipitación , Investigación/educación , Estudiantes
16.
J Cell Biol ; 189(7): 1143-55, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20566683

RESUMEN

Centromeres contain specialized nucleosomes in which histone H3 is replaced by the histone variant centromere protein A (CENP-A). CENP-A nucleosomes are thought to act as an epigenetic mark that specifies centromere identity. We previously identified CENP-N as a CENP-A nucleosome-specific binding protein. Here, we show that CENP-C also binds directly and specifically to CENP-A nucleosomes. Nucleosome binding by CENP-C required the extreme C terminus of CENP-A and did not compete with CENP-N binding, which suggests that CENP-C and CENP-N recognize distinct structural elements of CENP-A nucleosomes. A mutation that disrupted CENP-C binding to CENP-A nucleosomes in vitro caused defects in CENP-C targeting to centromeres. Moreover, depletion of CENP-C with siRNA resulted in the mislocalization of all other nonhistone CENPs examined, including CENP-K, CENP-H, CENP-I, and CENP-T, and led to a partial reduction in centromeric CENP-A. We propose that CENP-C binds directly to CENP-A chromatin and, together with CENP-N, provides the foundation upon which other centromere and kinetochore proteins are assembled.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Proteína A Centromérica , Cromatina , Proteínas Cromosómicas no Histona/deficiencia , Humanos , Mutación , Unión Proteica , ARN Interferente Pequeño/farmacología
17.
Nat Cell Biol ; 11(7): 896-902, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19543270

RESUMEN

Centromeres are specialized chromosomal domains that direct kinetochore assembly during mitosis. CENP-A (centromere protein A), a histone H3-variant present exclusively in centromeric nucleosomes, is thought to function as an epigenetic mark that specifies centromere identity. Here we identify the essential centromere protein CENP-N as the first protein to selectively bind CENP-A nucleosomes but not H3 nucleosomes. CENP-N bound CENP-A nucleosomes in a DNA sequence-independent manner, but did not bind soluble CENP-A-H4 tetramers. Mutations in CENP-N that reduced its affinity for CENP-A nucleosomes caused defects in CENP-N localization and had dominant effects on the recruitment of CENP-H, CENP-I and CENP-K to centromeres. Depletion of CENP-N using siRNA (short interfering RNA) led to similar centromere assembly defects and resulted in reduced assembly of nascent CENP-A into centromeric chromatin. These data suggest that CENP-N interprets the information encoded within CENP-A nucleosomes and recruits other proteins to centromeric chromatin that are required for centromere function and propagation.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Microscopía Fluorescente , Unión Proteica , ARN Interferente Pequeño
18.
Genes Dev ; 20(4): 449-60, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16481473

RESUMEN

The anaphase-promoting complex or cyclosome (APC) is an unusually complicated ubiquitin ligase, composed of 13 core subunits and either of two loosely associated regulatory subunits, Cdc20 and Cdh1. We analyzed the architecture of the APC using a recently constructed budding yeast strain that is viable in the absence of normally essential APC subunits. We found that the largest subunit, Apc1, serves as a scaffold that associates independently with two separable subcomplexes, one that contains Apc2 (Cullin), Apc11 (RING), and Doc1/Apc10, and another that contains the three TPR subunits (Cdc27, Cdc16, and Cdc23). We found that the three TPR subunits display a sequential binding dependency, with Cdc27 the most peripheral, Cdc23 the most internal, and Cdc16 between. Apc4, Apc5, Cdc23, and Apc1 associate interdependently, such that loss of any one subunit greatly reduces binding between the remaining three. Intriguingly, the cullin and TPR subunits both contribute to the binding of Cdh1 to the APC. Enzymatic assays performed with APC purified from strains lacking each of the essential subunits revealed that only cdc27Delta complexes retain detectable activity in the presence of Cdh1. This residual activity depends on the C-box domain of Cdh1, but not on the C-terminal IR domain, suggesting that the C-box mediates a productive interaction with an APC subunit other than Cdc27. We have also found that the IR domain of Cdc20 is dispensable for viability, suggesting that Cdc20 can activate the APC through another domain. We have provided an updated model for the subunit architecture of the APC.


Asunto(s)
Modelos Moleculares , Subunidades de Proteína/metabolismo , Saccharomycetales/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc5 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdh1 , Cartilla de ADN , Unión Proteica , Subunidades de Proteína/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Complejos de Ubiquitina-Proteína Ligasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA