Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Parasite Immunol ; 46(6): e13053, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817112

RESUMEN

Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.


Asunto(s)
Leishmania major , Macrófagos , Animales , Macrófagos/parasitología , Macrófagos/inmunología , Leishmania major/inmunología , Leishmania major/fisiología , Ratones , Ritmo Circadiano , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Relojes Circadianos , Células Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo , Endocitosis , Interacciones Huésped-Parásitos
2.
Parasite Immunol ; 44(3): e12903, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34964129

RESUMEN

Circadian rhythms are recurring variations of physiology with a period of ~24 h, generated by circadian clocks located throughout the body. Studies have shown a circadian regulation of many aspects of immunity. Immune cells have intrinsic clock mechanisms, and innate and adaptive immune responses - such as leukocyte migration, magnitude of inflammation, cytokine production and cell differentiation - are under circadian control. This circadian regulation has consequences for infections including parasitic infections. In the context of Leishmania infection, the circadian clock within host immune cells modulates the magnitude of the infection and the inflammatory response triggered by the parasite. As for malaria, rhythms within the immune system were shown to impact the developmental cycles of Plasmodium parasites within red blood cells. Further, host circadian rhythms impact infections by multicellular parasites; for example, infection with helminth Trichuris muris shows different kinetics of worm expulsion depending on time of day of infection, a variation that depends on the dendritic cell clock. Although the research on the circadian control of immunity in the context of parasitic infections is in its infancy, the research reviewed here suggests a crucial involvement of host circadian rhythms in immunity on the development and progression of parasitic infections.


Asunto(s)
Relojes Circadianos , Enfermedades Parasitarias , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Inmunidad/fisiología , Mamíferos
3.
iScience ; 27(5): 109684, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38680656

RESUMEN

Malaria is a disease caused by infection with parasite Plasmodium spp. We studied the circadian regulation of host responses to the parasite, in a mouse model of cerebral malaria. The course of the disease was markedly affected by time of infection, with decreased parasitemia and increased inflammation upon infection in the middle of the night. At this time, there were fewer reticulocytes, which are target cells of the parasites. We next investigated the effects of desynchronization of host clocks on the infection: after 10 weeks of recurrent jet lags, mice showed decreased parasite growth and lack of parasite load rhythmicity, paralleled by a loss of glucose rhythm. Accordingly, disrupting host metabolic rhythms impacted parasite load rhythmicity. In summary, our findings of a circadian modulation of malaria parasite growth and infection shed light on aspects of the disease relevant to human malaria and could contribute to new therapeutic or prophylactic measures.

4.
Immunohorizons ; 8(6): 442-456, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38916585

RESUMEN

Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.


Asunto(s)
Ritmo Circadiano , Eritrocitos , Macrófagos , Malaria , Plasmodium berghei , Animales , Macrófagos/inmunología , Macrófagos/parasitología , Macrófagos/metabolismo , Ratones , Eritrocitos/parasitología , Eritrocitos/inmunología , Malaria/inmunología , Malaria/parasitología , Plasmodium berghei/inmunología , Ritmo Circadiano/inmunología , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Citocinas/metabolismo , Relojes Circadianos/inmunología , Células Cultivadas , Proteoma/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-31921702

RESUMEN

Parasites have evolved various mechanisms to favor infection of their hosts and enhance the success of the infection. In this respect, time-of-day effects were found during the course of parasitic infections, which can be caused or controlled by circadian rhythms in the physiology of their vertebrate hosts. These include circadian clock-controlled rhythms in metabolism and in immune responses. Conversely, parasites can also modulate their hosts' behavioral and cellular rhythms. Lastly, parasites themselves were in some cases shown to possess their own circadian clock mechanisms, which can influence their capacity to infect their hosts. A better knowledge of the circadian regulation of host-parasite interactions will help in designing new preventive and therapeutic strategies for parasitic diseases.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Interacciones Huésped-Parásitos/fisiología , Enfermedades Parasitarias/inmunología , Enfermedades Parasitarias/fisiopatología , Animales , Botrytis/fisiología , Fenómenos Fisiológicos Celulares/fisiología , Helmintos/fisiología , Humanos , Leishmania/fisiología , Ratones , Plasmodium/fisiología , Trypanosoma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA