Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D1539-D1548, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36370099

RESUMEN

Mass spectrometry (MS) is by far the most used experimental approach in high-throughput proteomics. The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) was originally set up to standardize data submission and dissemination of public MS proteomics data. It is now 10 years since the initial data workflow was implemented. In this manuscript, we describe the main developments in PX since the previous update manuscript in Nucleic Acids Research was published in 2020. The six members of the Consortium are PRIDE, PeptideAtlas (including PASSEL), MassIVE, jPOST, iProX and Panorama Public. We report the current data submission statistics, showcasing that the number of datasets submitted to PX resources has continued to increase every year. As of June 2022, more than 34 233 datasets had been submitted to PX resources, and from those, 20 062 (58.6%) just in the last three years. We also report the development of the Universal Spectrum Identifiers and the improvements in capturing the experimental metadata annotations. In parallel, we highlight that data re-use activities of public datasets continue to increase, enabling connections between PX resources and other popular bioinformatics resources, novel research and also new data resources. Finally, we summarise the current state-of-the-art in data management practices for sensitive human (clinical) proteomics data.


Asunto(s)
Proteómica , Programas Informáticos , Humanos , Bases de Datos de Proteínas , Espectrometría de Masas , Proteómica/métodos , Biología Computacional/métodos
2.
Nucleic Acids Res ; 48(D1): D1145-D1152, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31686107

RESUMEN

The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) has standardized data submission and dissemination of mass spectrometry proteomics data worldwide since 2012. In this paper, we describe the main developments since the previous update manuscript was published in Nucleic Acids Research in 2017. Since then, in addition to the four PX existing members at the time (PRIDE, PeptideAtlas including the PASSEL resource, MassIVE and jPOST), two new resources have joined PX: iProX (China) and Panorama Public (USA). We first describe the updated submission guidelines, now expanded to include six members. Next, with current data submission statistics, we demonstrate that the proteomics field is now actively embracing public open data policies. At the end of June 2019, more than 14 100 datasets had been submitted to PX resources since 2012, and from those, more than 9 500 in just the last three years. In parallel, an unprecedented increase of data re-use activities in the field, including 'big data' approaches, is enabling novel research and new data resources. At last, we also outline some of our future plans for the coming years.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Proteómica/métodos , Macrodatos , Minería de Datos , Programas Informáticos , Diseño de Software , Navegador Web
3.
Nucleic Acids Res ; 45(D1): D1100-D1106, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27924013

RESUMEN

The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components.We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.


Asunto(s)
Bases de Datos de Proteínas , Proteoma , Proteómica , Motor de Búsqueda , Biología Computacional/métodos , Humanos , Espectrometría de Masas , Proteómica/métodos , Programas Informáticos , Navegador Web , Flujo de Trabajo
4.
Nat Methods ; 8(7): 587-91, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21572408

RESUMEN

Tandem mass spectrometry (MS/MS) experiments yield multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra they generate. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about peptide spectra that are common across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with new ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from ∼1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives rather than be analyzed as disparate datasets, as is mostly the case today.


Asunto(s)
Bases de Datos Factuales , Péptidos/análisis , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Archivos , Péptidos/química , Proteínas/química , Proteómica/métodos
5.
Nat Biotechnol ; 34(8): 828-837, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27504778

RESUMEN

The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/clasificación , Curaduría de Datos/métodos , Bases de Datos de Compuestos Químicos , Difusión de la Información/métodos , Espectrometría de Masas/estadística & datos numéricos , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información/métodos , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA