Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 291(51): 26502-26514, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27793992

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in a broad range of inflammatory and oncologic diseases. MIF is unique among cytokines in terms of its release profile and inflammatory role, notably as an endogenous counter-regulator of the anti-inflammatory effects of glucocorticoids. In addition, it exhibits a catalytic tautomerase activity amenable to the design of high affinity small molecule inhibitors. Although several classes of these compounds have been identified, biologic characterization of these molecules remains a topic of active investigation. In this study, we used in vitro LPS-driven assays to characterize representative molecules from several classes of MIF inhibitors. We determined that MIF inhibitors exhibit distinct profiles of anti-inflammatory activity, especially with regard to TNFα. We further investigated a molecule with relatively low anti-inflammatory activity, compound T-614 (also known as the anti-rheumatic drug iguratimod), and found that, in addition to exhibiting selective MIF inhibition in vitro and in vivo, iguratimod also has additive effects with glucocorticoids. Furthermore, we found that iguratimod synergizes with glucocorticoids in attenuating experimental autoimmune encephalitis, a model of multiple sclerosis. Our work identifies iguratimod as a valuable new candidate for drug repurposing to MIF-relevant diseases, including multiple sclerosis.


Asunto(s)
Cromonas/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Glucocorticoides/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Esclerosis Múltiple/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Línea Celular Tumoral , Cromonas/agonistas , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Glucocorticoides/agonistas , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Lipopolisacáridos/toxicidad , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Sulfonamidas/agonistas , Factor de Necrosis Tumoral alfa/metabolismo
2.
Cancers (Basel) ; 14(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626147

RESUMEN

Activation of the NRF2 pathway through gain-of-function mutations or loss-of-function of its suppressor KEAP1 is a frequent finding in lung cancer. NRF2 activation has been reported to alter the tumor microenvironment. Here, we demonstrated that NRF2 alters tryptophan metabolism through the kynurenine pathway that is associated with a tumor-promoting, immune suppressed microenvironment. Specifically, proteomic profiles of 47 lung adenocarcinoma (LUAD) cell lines (11 KEAP1 mutant and 36 KEAP1 wild-type) revealed the tryptophan-kynurenine enzyme kynureninase (KYNU) as a top overexpressed protein associated with activated NRF2. The siRNA-mediated knockdown of NFE2L2, the gene encoding for NRF2, or activation of the NRF2 pathway through siRNA-mediated knockdown of KEAP1 or via chemical induction with the NRF2-activator CDDO-Me confirmed that NRF2 is a regulator of KYNU expression in LUAD. Metabolomic analyses confirmed KYNU to be enzymatically functional. Analysis of multiple independent gene expression datasets of LUAD, as well as a LUAD tumor microarray demonstrated that elevated KYNU was associated with immunosuppression, including potent induction of T-regulatory cells, increased levels of PD1 and PD-L1, and resulted in poorer survival. Our findings indicate a novel mechanism of NRF2 tumoral immunosuppression through upregulation of KYNU.

3.
J Natl Cancer Inst ; 114(2): 290-301, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34524427

RESUMEN

BACKGROUND: Approximately 20% of lung adenocarcinoma (LUAD) is negative for the lineage-specific oncogene Thyroid transcription factor 1 (TTF-1) and exhibits worse clinical outcome with a low frequency of actionable genomic alterations. To identify molecular features associated with TTF-1-negative LUAD, we compared the transcriptomic and proteomic profiles of LUAD cell lines. SRGN , a chondroitin sulfate proteoglycan Serglycin, was identified as a markedly overexpressed gene in TTF-1-negative LUAD. We therefore investigated the roles and regulation of SRGN in TTF-1-negative LUAD. METHODS: Proteomic and metabolomic analyses of 41 LUAD cell lines were done using mass spectrometry. The function of SRGN was investigated in 3 TTF-1-negative and 4 TTF-1-positive LUAD cell lines and in a syngeneic mouse model (n = 5 to 8 mice per group). Expression of SRGN was evaluated in 94 and 105 surgically resected LUAD tumor specimens using immunohistochemistry. All statistical tests were 2-sided. RESULTS: SRGN was markedly overexpressed at mRNA and protein levels in TTF-1-negative LUAD cell lines (P < .001 for both mRNA and protein levels). Expression of SRGN in LUAD tumor tissue was associated with poor outcome (hazard ratio = 4.22, 95% confidence interval = 1.12 to 15.86, likelihood ratio test, P = .03), and with higher expression of Programmed cell death 1 ligand 1 (PD-L1) in tumor cells and higher infiltration of Programmed cell death protein 1-positive lymphocytes. SRGN regulated expression of PD-L1 as well as proinflammatory cytokines, including Interleukin-6, Interleukin-8, and C-X-C motif chemokine 1 in LUAD cell lines; increased migratory and invasive properties of LUAD cells and fibroblasts; and enhanced angiogenesis. SRGN was induced by DNA demethylation resulting from Nicotinamide N-methyltransferase-mediated impairment of methionine metabolism. CONCLUSIONS: Our findings suggest that SRGN plays a pivotal role in tumor-stromal interaction and reprogramming into an aggressive and immunosuppressive tumor microenvironment in TTF-1-negative LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas de Unión al ADN , Neoplasias Pulmonares , Proteoglicanos , Factores de Transcripción , Proteínas de Transporte Vesicular , Adenocarcinoma del Pulmón/genética , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Fenotipo , Proteoglicanos/metabolismo , Proteómica , Factor Nuclear Tiroideo 1/genética , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo
4.
JCO Precis Oncol ; 4: 426-436, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35050739

RESUMEN

PURPOSE: The combination chemotherapy of fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) has provided clinically meaningful improvement for pancreatic ductal adenocarcinoma (PDAC). We previously uncovered a role for the serine hydrolase carboxylesterase 2 (CES2) in mediating intratumoral activation of the prodrug irinotecan, a constituent of FOLFIRINOX. We aimed to further test the predictive value of CES2 for response to irinotecan using patient-derived xenograft (PDX) models and to elucidate the determinants of CES2 expression and response to FOLFIRINOX treatment among patients with PDAC. METHODS: PDXs were engrafted subcutaneously into nude mice and treated for 4 weeks with either saline control or irinotecan. CES2 and hepatocyte nuclear factor 4 alpha (HNF4A) expression in PDAC tissues was evaluated by immunohistochemical and Western blot analysis. Kaplan-Meier and Cox regression analyses were applied to assess the association between overall survival and hemoglobin A1C (HbA1C) levels in patients who underwent neoadjuvant FOLFIRINOX treatment. RESULTS: High CES2 activity in PDAC PDXs was associated with increased sensitivity to irinotecan. Integrated gene expression, proteomic analyses, and in vitro genetic experiments revealed that nuclear receptor HNF4A, which is upregulated in diabetes, is the upstream transcriptional regulator of CES2 expression. Elevated CES2 protein expression in PDAC tissues was positively associated with a history of type 2 diabetes (odds ratio, 4.84; P = .02). High HbA1C levels were associated with longer overall survival in patients who received neoadjuvant FOLFIRINOX treatment (P = .04). CONCLUSION: To our knowledge, we provide, for the first time, evidence that CES2 expression is associated with a history of type 2 diabetes in PDAC and that elevated HbA1C, by predicting tumor CES2 expression, may represent a novel marker for stratifying patients most likely to respond to FOLFIRINOX therapy.

5.
Integr Biol (Camb) ; 11(6): 251-263, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329868

RESUMEN

The epithelial-mesenchymal transition (EMT) is a key process implicated in cancer metastasis and therapy resistance. Recent studies have emphasized that cells can undergo partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype - a cornerstone of tumour aggressiveness and poor prognosis. These cells can have enhanced tumour-initiation potential as compared to purely epithelial or mesenchymal ones and can integrate the properties of cell-cell adhesion and motility that facilitates collective cell migration leading to clusters of circulating tumour cells (CTCs) - the prevalent mode of metastasis. Thus, identifying the molecular players that can enable cells to maintain a hybrid E/M phenotype is crucial to curb the metastatic load. Using an integrated computational-experimental approach, we show that the transcription factor NRF2 can prevent a complete EMT and instead stabilize a hybrid E/M phenotype. Knockdown of NRF2 in hybrid E/M non-small cell lung cancer cells H1975 and bladder cancer cells RT4 destabilized a hybrid E/M phenotype and compromised the ability to collectively migrate to close a wound in vitro. Notably, while NRF2 knockout simultaneously downregulated E-cadherin and ZEB-1, overexpression of NRF2 enriched for a hybrid E/M phenotype by simultaneously upregulating both E-cadherin and ZEB-1 in individual RT4 cells. Further, we predict that NRF2 is maximally expressed in hybrid E/M phenotype(s) and demonstrate that this biphasic dynamic arises from the interconnections among NRF2 and the EMT regulatory circuit. Finally, clinical records from multiple datasets suggest a correlation between a hybrid E/M phenotype, high levels of NRF2 and its targets and poor survival, further strengthening the emerging notion that hybrid E/M phenotype(s) may occupy the 'metastatic sweet spot'.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Modelos Teóricos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes , Fenotipo , Pronóstico , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA