Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(2): 365-377, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38300528

RESUMEN

Alterations in epigenetic marks, such as DNA methylation, represent a hallmark of cancer that has been successfully exploited for therapy in myeloid malignancies. Hypomethylating agents (HMA), such as azacitidine, have become standard-of-care therapy to treat myelodysplastic syndromes (MDS), myeloid neoplasms that can evolve into acute myeloid leukemia. However, our capacity to identify who will respond to HMAs, and the duration of response, remains limited. To shed light on this question, we have leveraged the unprecedented analytic power of single-cell technologies to simultaneously map the genome and immunoproteome of MDS samples throughout clinical evolution. We were able to chart the architecture and evolution of molecular clones in precious paired bone marrow MDS samples at diagnosis and posttreatment to show that a combined imbalance of specific cell lineages with diverse mutational profiles is associated with the clinical response of patients with MDS to hypomethylating therapy. SIGNIFICANCE: MDS are myeloid clonal hemopathies with a low 5-year survival rate, and approximately half of the cases do not respond to standard HMA therapy. Our innovative single-cell multiomics approach offers valuable biological insights and potential biomarkers associated with the demethylating agent efficacy. It also identifies vulnerabilities that can be targeted using personalized combinations of small drugs and antibodies.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Multiómica , Síndromes Mielodisplásicos/tratamiento farmacológico , Azacitidina/uso terapéutico , Metilación de ADN/genética , Leucemia Mieloide Aguda/tratamiento farmacológico
2.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824124

RESUMEN

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Inhibidor NF-kappaB alfa , Transducción de Señal , Tretinoina , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Tretinoina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Desarrollo Embrionario/genética , Ratones Noqueados , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica , Femenino
3.
Nat Aging ; 3(6): 688-704, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291218

RESUMEN

Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.


Asunto(s)
Interleucina-17 , Envejecimiento de la Piel , Ratones , Animales , Interleucina-17/genética , Inmunidad Innata , Linfocitos , Piel
4.
Trends Cancer ; 8(10): 820-838, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35821003

RESUMEN

Bulk sequencing methodologies have allowed us to make great progress in cancer research. Unfortunately, these techniques lack the resolution to fully unravel the epigenetic mechanisms that govern tumor heterogeneity. Consequently, many novel single cell-sequencing methodologies have been developed over the past decade, allowing us to explore the epigenetic components that regulate different aspects of cancer heterogeneity, namely: clonal heterogeneity, tumor microenvironment (TME), spatial organization, intratumoral differentiation programs, metastasis, and resistance mechanisms. In this review, we explore the different sequencing techniques that enable researchers to study different aspects of epigenetics (DNA methylation, chromatin accessibility, histone modifications, DNA-protein interactions, and chromatin 3D architecture) at the single cell level, their potential applications in cancer, and their current technical limitations.


Asunto(s)
Epigénesis Genética , Neoplasias , Cromatina/genética , ADN , Epigenómica , Humanos , Neoplasias/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA