Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cardiovasc Pharmacol ; 78(5): e656-e661, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328710

RESUMEN

ABSTRACT: Infarct size is a major determinant of outcomes after acute myocardial infarction (AMI). Carbon monoxide-releasing molecules (CORMs), which deliver nanomolar concentrations of carbon monoxide to tissues, have been shown to reduce infarct size in rodents. We evaluated efficacy and safety of CORM-A1 to reduce infarct size in a clinically relevant porcine model of AMI. We induced AMI in Yorkshire White pigs by inflating a coronary angioplasty balloon to completely occlude the left anterior descending artery for 60 minutes, followed by deflation of the balloon to mimic reperfusion. Fifteen minutes after balloon occlusion, animals were given an infusion of 4.27 mM CORM-A1 (n = 7) or sodium borate control (n = 6) over 60 minutes. Infarct size, cardiac biomarkers, ejection fraction, and hepatic and renal function were compared amongst the groups. Immunohistochemical analyses were performed to compare inflammation, cell proliferation, and apoptosis between the groups. CORM-A1-treated animals had significant reduction in absolute infarct area (158 ± 16 vs. 510 ± 91 mm2, P < 0.001) and infarct area corrected for area at risk (24.8% ± 2.6% vs. 45.2% ± 4.0%, P < 0.0001). Biochemical markers of myocardial injury also tended to be lower and left ventricular function tended to recover better in the CORM-A1 treated group. There was no evidence of hepatic or renal toxicity with the doses used. The cardioprotective effects of CORM-A1 were associated with a significant reduction in cell proliferation and inflammation. CORM-A1 reduces infarct size and improves left ventricular remodeling and function in a porcine model of reperfused MI by a reduction in inflammation. These potential cardioprotective effects of CORMs warrant further translational investigations.


Asunto(s)
Boranos/farmacología , Monóxido de Carbono/metabolismo , Carbonatos/farmacología , Fármacos Cardiovasculares/farmacología , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Boranos/metabolismo , Carbonatos/metabolismo , Fármacos Cardiovasculares/metabolismo , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Antígeno Ki-67/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sus scrofa , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
2.
Am J Respir Crit Care Med ; 199(2): 199-210, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211629

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by vascular cell proliferation and endothelial cell apoptosis. TLR3 (Toll-like receptor 3) is a receptor for double-stranded RNA and has been recently implicated in vascular protection. OBJECTIVES: To study the expression and role of TLR3 in PAH and to determine whether a TLR3 agonist reduces pulmonary hypertension in preclinical models. METHODS: Lung tissue and endothelial cells from patients with PAH were investigated by polymerase chain reaction, immunofluorescence, and apoptosis assays. TLR3-/- and TLR3+/+ mice were exposed to chronic hypoxia and SU5416. Chronic hypoxia or chronic hypoxia/SU5416 rats were treated with the TLR3 agonist polyinosinic/polycytidylic acid (Poly[I:C]). MEASUREMENTS AND MAIN RESULTS: TLR3 expression was reduced in PAH patient lung tissue and endothelial cells, and TLR3-/- mice exhibited more severe pulmonary hypertension following exposure to chronic hypoxia/SU5416. TLR3 knockdown promoted double-stranded RNA signaling via other intracellular RNA receptors in endothelial cells. This was associated with greater susceptibility to apoptosis, a known driver of pulmonary vascular remodeling. Poly(I:C) increased TLR3 expression via IL-10 in rat endothelial cells. In vivo, high-dose Poly(I:C) reduced pulmonary hypertension in both rat models in proof-of-principle experiments. In addition, Poly(I:C) also reduced right ventricular failure in established pulmonary hypertension. CONCLUSIONS: Our work identifies a novel role for TLR3 in PAH based on the findings that reduced expression of TLR3 contributes to endothelial apoptosis and pulmonary vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/genética , Receptor Toll-Like 3/genética , Animales , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Ratones , Ratas , Transducción de Señal , Receptor Toll-Like 3/metabolismo
3.
Ann Neurol ; 75(5): 670-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24644058

RESUMEN

OBJECTIVE: Bacterial infection contributes to diverse noninfectious diseases and worsens outcome after stroke. Streptococcus pneumoniae, the most common infection in patients at risk of stroke, is a major cause of prolonged hospitalization and death of stroke patients, but how infection impacts clinical outcome is not known. METHODS: We induced sustained pulmonary infection by a human S. pneumoniae isolate in naive and comorbid rodents to investigate the effect of infection on vascular and inflammatory responses prior to and after cerebral ischemia. RESULTS: S. pneumoniae infection triggered atherogenesis, led to systemic induction of interleukin (IL) 1, and profoundly exacerbated (50-90%) ischemic brain injury in rats and mice, a response that was more severe in combination with old age and atherosclerosis. Systemic blockade of IL-1 with IL-1 receptor antagonist (IL-1Ra) fully reversed infection-induced exacerbation of brain injury and functional impairment caused by cerebral ischemia. We show that infection-induced systemic inflammation mediates its effects via increasing platelet activation and microvascular coagulation in the brain after cerebral ischemia, as confirmed by reduced brain injury in response to blockade of platelet glycoprotein (GP) Ibα. IL-1 and platelet-mediated signals converge on microglia, as both IL-1Ra and GPIbα blockade reversed the production of IL-1α by microglia in response to cerebral ischemia in infected animals. INTERPRETATION: S. pneumoniae infection augments atherosclerosis and exacerbates ischemic brain injury via IL-1 and platelet-mediated systemic inflammation. These mechanisms may contribute to diverse cardio- and cerebrovascular pathologies in humans.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Interleucina-1/efectos adversos , Complejo GPIb-IX de Glicoproteína Plaquetaria/efectos adversos , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pneumoniae , Animales , Isquemia Encefálica/microbiología , Progresión de la Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Interleucina-1/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/microbiología , Microglía/patología , Activación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/antagonistas & inhibidores , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Ratas , Ratas Wistar , Infecciones Estreptocócicas/microbiología
4.
Mol Biol Cell ; 33(9): ar80, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609212

RESUMEN

Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.


Asunto(s)
Complejo 1 de Proteína Adaptadora , Factor de Transcripción AP-1 , Complejo 1 de Proteína Adaptadora/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/metabolismo , Polaridad Celular , Drosophila/metabolismo , Células Epiteliales/metabolismo , Integrinas/metabolismo , Morfogénesis/fisiología , Transporte de Proteínas/fisiología , Factor de Transcripción AP-1/metabolismo
5.
Nat Commun ; 10(1): 5183, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729368

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs). Here, we report that the pro-proliferative and migratory phenotype in PASMCs stimulated with OPG is mediated via the Fas receptor and that treatment with a human antibody targeting OPG can attenuate pulmonary vascular remodelling associated with PAH in multiple rodent models of early and late treatment. We also demonstrate that the therapeutic efficacy of the anti-OPG antibody approach in the presence of standard of care vasodilator therapy is mediated by a reduction in pulmonary vascular remodelling. Targeting OPG with a therapeutic antibody is a potential treatment strategy in PAH.


Asunto(s)
Anticuerpos/administración & dosificación , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Osteoprotegerina/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Osteoprotegerina/genética , Unión Proteica , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Ratas , Ratas Wistar , Remodelación Vascular/efectos de los fármacos
6.
Sci Rep ; 8(1): 12972, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154413

RESUMEN

Studies were undertaken to examine any role for the hepcidin/ferroportin axis in proliferative responses of human pulmonary artery smooth muscle cells (hPASMCs). Entirely novel findings have demonstrated the presence of ferroportin in hPASMCs. Hepcidin treatment caused increased proliferation of these cells most likely by binding ferroportin resulting in internalisation and cellular iron retention. Cellular iron content increased with hepcidin treatment. Stabilisation of ferroportin expression and activity via intervention with the therapeutic monoclonal antibody LY2928057 reversed proliferation and cellular iron accumulation. Additionally, IL-6 treatment was found to enhance proliferation and iron accumulation in hPASMCs; intervention with LY2928057 prevented this response. IL-6 was also found to increase hepcidin transcription and release from hPASMCs suggesting a potential autocrine response. Hepcidin or IL-6 mediated iron accumulation contributes to proliferation in hPASMCs; ferroportin mediated cellular iron excretion limits proliferation. Haemoglobin also caused proliferation of hPASMCs; in other novel findings, CD163, the haemoglobin/haptoglobin receptor, was found on these cells and offers a means for cellular uptake of iron via haemoglobin. Il-6 was also found to modulate CD163 on these cells. These data contribute to a better understanding of how disrupted iron homeostasis may induce vascular remodelling, such as in pulmonary arterial hypertension.


Asunto(s)
Proteínas de Transporte de Catión/biosíntesis , Proliferación Celular , Hepcidinas/biosíntesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Anticuerpos Monoclonales/farmacología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/fisiología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Interleucina-6/metabolismo , Hierro/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Arteria Pulmonar/citología , Receptores de Superficie Celular/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
7.
Pulm Circ ; 8(1): 2045893217752328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29261014

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is increasingly diagnosed in elderly patients who also have an increased risk of co-morbid atherosclerosis. Apolipoprotein E-deficient (ApoE-/-) mice develop atherosclerosis with severe PAH when fed a high-fat diet (HFD) and have increased levels of endothelin (ET)-1. ET-1 receptor antagonists (ERAs) are used for the treatment of PAH but less is known about whether ERAs are beneficial in atherosclerosis. We therefore examined whether treatment of HFD-ApoE-/- mice with macitentan, a dual ETA/ETB receptor antagonist, would have any effect on both atherosclerosis and PAH. ApoE-/- mice were fed chow or HFD for eight weeks. After four weeks of HFD, mice were randomized to a four-week treatment of macitentan by food (30 mg/kg/day dual ETA/ETB antagonist), or placebo groups. Echocardiography and closed-chest right heart catheterization were used to determine PAH phenotype and serum samples were collected for cytokine analysis. Thoracic aortas were harvested to assess vascular reactivity using wire myography, and histological analyses were performed on the brachiocephalic artery and aortic root to assess atherosclerotic burden. Macitentan treatment of HFD-fed ApoE-/- mice was associated with a beneficial effect on the PAH phenotype and led to an increase in endothelial-dependent relaxation in thoracic aortae. Macitentan treatment was also associated with a significant reduction in interleukin 6 (IL-6) concentration but there was no significant effect on atherosclerotic burden. Dual blockade of ETA/ETB receptors improves endothelial function and improves experimental PAH but had no significant effect on atherosclerosis.

8.
Pulm Circ ; 7(4): 768-776, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828907

RESUMEN

Bone morphogenetic protein receptor type 2 (BMPR2) mutations are present in patients with heritable and idiopathic pulmonary arterial hypertension (PAH). Circulating levels of interleukin-1 (IL-1) are raised in patients and animal models. Whether interplay between BMP and IL-1 signaling can explain the local manifestation of PAH in the lung remains unclear. Cell culture, siRNA, and mRNA microarray analysis of RNA isolated from human pulmonary artery (PASMC) and aortic (AoSMC) smooth muscle cells were used. R899X+/- BMPR2 transgenic mice fed a Western diet for six weeks were given daily injections of IL-1ß prior to assessment for PAH and tissue collection. PASMC have reduced inflammatory activation in response to IL-1ß compared with AoSMCs; however, PASMC with reduced BMPR2 demonstrated an exaggerated response. Mice treated with IL-1ß had higher white blood cell counts and significantly raised serum protein levels of IL-6 and osteoprotegerin (OPG) plasma levels recapitulating in vitro data. Phenotypically, IL-1ß treated mice demonstrated increased pulmonary vascular remodeling. IL-1ß induces an exaggerated pulmonary artery specific transcriptomic inflammatory response when BMPR2 signaling is reduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA