Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37501572

RESUMEN

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Péptidos Antimicrobianos , Péptidos/farmacología , Péptidos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387400

RESUMEN

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021080

RESUMEN

The activity of many antibiotics depends on the initial density of cells used in bacterial growth inhibition assays. This phenomenon, termed the inoculum effect, can have important consequences for the therapeutic efficacy of the drugs, because bacterial loads vary by several orders of magnitude in clinically relevant infections. Antimicrobial peptides are a promising class of molecules in the fight against drug-resistant bacteria because they act mainly by perturbing the cell membranes rather than by inhibiting intracellular targets. Here, we report a systematic characterization of the inoculum effect for this class of antibacterial compounds. Minimum inhibitory concentration values were measured for 13 peptides (including all-D enantiomers) and peptidomimetics, covering more than seven orders of magnitude in inoculated cell density. In most cases, the inoculum effect was significant for cell densities above the standard inoculum of 5 × 105 cells/mL, while for lower densities the active concentrations remained essentially constant, with values in the micromolar range. In the case of membrane-active peptides, these data can be rationalized by considering a simple model, taking into account peptide-cell association, and hypothesizing that a threshold number of cell-bound peptide molecules is required in order to cause bacterial killing. The observed effect questions the clinical utility of activity and selectivity determinations performed at a fixed, standardized cell density. A routine evaluation of the dependence of the activity of antimicrobial peptides and peptidomimetics on the inoculum should be considered.


Asunto(s)
Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Antimicrobianos/química , Bacterias/patogenicidad , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Carga Bacteriana/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Peptidomiméticos/farmacología , Staphylococcus aureus/patogenicidad , Estereoisomerismo
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673985

RESUMEN

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Humanos , Anuros , Piel/microbiología , Piel/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química
5.
J Pept Sci ; 29(4): e3463, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36426386

RESUMEN

The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2 ), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4 →Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 µM) compared with the naturally occurring peptide. The substitution Ala18 →Lys and the double substitution Asp4 →Lys and Ala18 →Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12-20 µM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 µM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 µM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+ ] in BRIN-BD11 cells when incubated at a concentration of 1 µM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Ratones , Animales , Humanos , Péptidos Catiónicos Antimicrobianos/química , Lisina , Antibacterianos/química , Diabetes Mellitus Tipo 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Endoteliales/metabolismo , Proteínas Anfibias/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Neoplasias Pulmonares/metabolismo , Insulina/metabolismo , Antineoplásicos/farmacología , Anuros/metabolismo , Piel/metabolismo
6.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971429

RESUMEN

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Asunto(s)
Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Enfermedades Pulmonares/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bicarbonatos/metabolismo , Cloruros/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Transporte Iónico/efectos de los fármacos , Enfermedades Pulmonares/microbiología , Enfermedades Pulmonares/patología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad , Ratas , Ratas Endogámicas F344
7.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683025

RESUMEN

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) Candida species and Cryptococcus neoformans, with MIC50 between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC80 ranging from 4 to 32 µM, and (iii) Aspergillus strains with MIC80 of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of Candida albicans cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some C. albicans virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast-mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30-35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros , Biopelículas , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/farmacología
8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163819

RESUMEN

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de la radiación , Queratinocitos/citología , Luz/efectos adversos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Síndrome de Down , Transición Epitelial-Mesenquimal/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Células HaCaT , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Pseudomonas aeruginosa/efectos de la radiación , Factores de Transcripción de la Familia Snail/metabolismo , Staphylococcus aureus/efectos de la radiación
9.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806198

RESUMEN

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Asunto(s)
Herpesvirus Humano 1 , Anfibios , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Herpesvirus Humano 1/fisiología , Replicación Viral
10.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429882

RESUMEN

Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides' ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides' ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.


Asunto(s)
Enfermedades Transmisibles/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacología , Línea Celular , Enfermedad Crónica/prevención & control , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/patología , Ciclooxigenasa 2/genética , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Defensinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Inflamación/microbiología , Inflamación/patología , Interleucina-6/genética , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/química , Pulmón/efectos de los fármacos , Pulmón/microbiología , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Estereoisomerismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
11.
J Antimicrob Chemother ; 75(9): 2564-2572, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32514531

RESUMEN

BACKGROUND: Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. OBJECTIVES: Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. METHODS: The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. RESULTS: A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. CONCLUSIONS: This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.


Asunto(s)
Colistina , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Translocador Nuclear del Receptor de Aril Hidrocarburo , Colistina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa
12.
J Org Chem ; 85(16): 10891-10901, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32806095

RESUMEN

Colistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural ent-beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant Pseudomonas aeruginosa strains including clinical isolates to exploit the versatility of the diterpene scaffold. Microbiological assays coupled with molecular modeling indicated that for a more efficient colistin adjuvant activity, likely resulting from inhibition of the ArnT activity by the selected compounds and therefore from their interaction with the catalytic site of ArnT, an ent-beyerane scaffold is required along with an oxalate-like group at C-18/C-19 or a sugar residue at C-19 to resemble L-Ara4N. The ent-beyerane skeleton is identified for the first time as a privileged scaffold for further cost-effective development of valuable colistin resistance inhibitors.


Asunto(s)
Colistina , Diterpenos , Antibacterianos/farmacología , Proteínas Bacterianas , Diterpenos/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
13.
J Enzyme Inhib Med Chem ; 35(1): 1751-1764, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32957844

RESUMEN

The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteolisis/efectos de los fármacos , Ovinos , Relación Estructura-Actividad
14.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321906

RESUMEN

Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70-80% killing at 50-100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Sinergismo Farmacológico , Tobramicina/farmacología
15.
Molecules ; 25(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784887

RESUMEN

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Productos Biológicos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Humanos , Infecciones Estafilocócicas/microbiología
16.
Biomacromolecules ; 20(5): 1876-1888, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013061

RESUMEN

Due to their excellent in vitro activity against multidrug resistant bacteria, antimicrobial peptides (AMPs) hold promise for treatment of Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) sufferers. In this work, poly(lactide- co-glycolide) (PLGA) nanoparticles for lung delivery of AMPs deriving from the frog-skin esculentin-1a, namely, Esc(1-21) and Esc(1-21)-1c (Esc peptides), were successfully developed. Improved peptide transport through artificial CF mucus and simulated bacterial extracellular matrix was achieved in vitro. The formulations were effectively delivered through a liquid jet nebulizer already available to patients. Notably, Esc peptide-loaded nanoparticles displayed an improved efficacy in inhibiting P. aeruginosa growth in vitro and in vivo in the long term. A single intratracheal administration of Esc peptide-loaded nanoparticles in a mouse model of P. aeruginosa lung infection resulted in a 3-log reduction of pulmonary bacterial burden up to 36 h. Overall, results unravel the potential of PLGA nanoparticles as a reliable delivery system of AMPs to lungs.


Asunto(s)
Proteínas Anfibias/administración & dosificación , Antibacterianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Nanopartículas/química , Neumonía/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Proteínas Anfibias/farmacología , Proteínas Anfibias/uso terapéutico , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Femenino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/efectos adversos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/efectos adversos , Pseudomonas aeruginosa/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos
17.
Aging Clin Exp Res ; 31(9): 1337-1341, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30406357

RESUMEN

AIM: To explore the relationship between thyroid hormones, Vitamin D (Vit.D) serum concentrations and metabolic syndrome (MetS) in euthyroid subjects. METHODS: 123 community-dwelling subjects were enrolled. According to thyroid-stimulating hormone (TSH) values the sample was divided into: (1) group 1 (TSH ≤ 2 mU/L); (2) group 2 (TSH > 2 mU/L). RESULTS: Group 2 showed higher percentage of subjects with MetS (p = 0.003) and hypertension (p = 0.031), higher values of waist circumference (WC) (p = 0.007), parathyroid hormone (p = 0.016), glycaemia (p = 0.045), triglycerides (p = 0.034) and free T4 (fT4) (p = 0.013). Correlation analysis showed several weak significant correlations: MetS with TSH (r = 0.202, p = 0.031) and fT3 (r = - 0.206, p = 0.028); THS with body mass index (r = 0.187, p = 0.047) and hypertension (r = 0.199, p = 0.034); Vit.D with WC (r = - 0.185, p = 0.04). CONCLUSIONS: Our results showed a possible association between thyroid hormones and MetS. Visceral fat and insulin resistance may be an interesting link between Vit.D and TSH levels.


Asunto(s)
Síndrome Metabólico/sangre , Tirotropina/sangre , Vitamina D/sangre , Anciano , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Humanos , Hipertensión/sangre , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Circunferencia de la Cintura/fisiología
18.
J Pept Sci ; 24(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29349894

RESUMEN

Temporin A (FLPLIGRVLSGIL-NH2 ), temporin F (FLPLIGKVLSGIL-NH2 ), and temporin G (FFPVIGRILNGIL-NH2 ), first identified in skin secretions of the frog Rana temporaria, produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal ß-cells at concentrations ≥1 nM, without cytotoxicity at concentrations up to 3 µM. Temporin A was the most effective. The mechanism of insulinotropic action did not involve an increase in intracellular Ca2+ concentrations. Temporins B, C, E, H, and K were either inactive or only weakly active. Temporins A, F, and G also produced a concentration-dependent stimulation of insulin release from 1.1B4 human-derived pancreatic ß-cells, with temporin G being the most potent and effective, and from isolated mouse islets. The data indicate that cationicity, hydrophobicity, and the angle subtended by the charged residues in the temporin molecule are important determinants for in vitro insulinotropic activity. Temporin A and F (1 µM), but not temporin G, protected BRIN-BD11 cells against cytokine-induced apoptosis (P < 0.001) and augmented (P < 0.001) proliferation of the cells to a similar extent as glucagon-like peptide-1. Intraperitoneal injection of temporin G (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion whereas temporin A and F administration was without significant effect on plasma glucose levels. The study suggests that combination therapy involving agents developed from the temporin A and G sequences may find application in Type 2 diabetes treatment.


Asunto(s)
Proteínas Anfibias/farmacología , Glucosa/farmacología , Hipoglucemiantes/farmacología , Insulina/metabolismo , Proteínas/farmacología , Rana temporaria/metabolismo , Piel/química , Alanina/farmacología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos , Proliferación Celular , Péptido 1 Similar al Glucagón/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inyecciones Intraperitoneales , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/farmacología , Ratas
19.
Biochim Biophys Acta Biomembr ; 1859(12): 2327-2339, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28912103

RESUMEN

Antimicrobial peptides (AMPs) represent new alternatives to cope with the increasing number of multi-drug resistant microbial infections. Recently, a derivative of the frog-skin AMP esculentin-1a, Esc(1-21), was found to rapidly kill both the planktonic and biofilm forms of the Gram-negative bacterium Pseudomonas aeruginosa with a membrane-perturbing activity as a plausible mode of action. Lately, its diastereomer Esc(1-21)-1c containing two d-amino acids i.e. DLeu14 and DSer17 revealed to be less cytotoxic, more stable to proteolytic degradation and more efficient in eradicating Pseudomonas biofilm. When tested in vitro against the free-living form of this pathogen, it displayed potent bactericidal activity, but this was weaker than that of the all-l peptide. To investigate the reason accounting for this difference, mechanistic studies were performed on Pseudomonas spheroplasts and anionic or zwitterionic membranes, mimicking the composition of microbial and mammalian membranes, respectively. Furthermore, structural studies by means of optical and nuclear magnetic resonance spectroscopies were carried out. Our results suggest that the different extent in the bactericidal activity between the two isomers is principally due to differences in their interaction with the bacterial cell wall components. Indeed, the lower ability in binding and perturbing anionic phospholipid bilayers for Esc(1-21)-1c contributes only in a small part to this difference, while the final effect of membrane thinning once the peptide is inserted into the membrane is identical to that provoked by Esc(1-21). In addition, the presence of two d-amino acids is sufficient to reduce the α-helical content of the peptide, in parallel with its lower cytotoxicity.


Asunto(s)
Proteínas Anfibias/química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Citotoxinas/química , Pseudomonas aeruginosa/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/aislamiento & purificación , Proteínas Anfibias/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/crecimiento & desarrollo , Colesterol/química , Citotoxinas/aislamiento & purificación , Citotoxinas/farmacología , Cinética , Leucina/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Conformación Proteica en Hélice alfa , Pseudomonas aeruginosa/crecimiento & desarrollo , Ranidae , Serina/química , Piel/química , Esferoplastos/química , Esferoplastos/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
20.
Biopolymers ; 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29086910

RESUMEN

Contact lens (CL) wear is a risk factor for development of microbial keratitis, a vision threatening infection of the eye. Adverse events associated with colonization of lenses, especially by the multi-drug resistant and biofilm forming bacterium Pseudomonas aeruginosa remain a major safety issue. Therefore, novel strategies and compounds to reduce the onset of CL-associated ocular infections are needed. Recently, the activity of the frog skin-derived antimicrobial peptide Esc(1-21) and its diastereomer Esc(1-21)-1c was evaluated against both planktonic and sessile forms of this pathogen. Furthermore, Esc(1-21) was found to significantly reduce the severity of P. aeruginosa keratitis in a mouse model and preserve antipseudomonal activity in the presence of human basal tears. Here, we have analyzed the activity of the peptides on P. aeruginosa biofilm formed on soft CLs. Microbiological assays and scanning electron microscopy analysis indicated that the peptides were able to disrupt the bacterial biofilm, with the diastereomer having the greater efficacy (up to 85% killing vs no killing at 4 µM for some strains). Furthermore, upon covalent immobilization to the CL, the two peptides were found to cause more than four log reduction in the number of bacterial cells within 20 minutes and to reduce bacterial adhesion to the CL surface (77%-97% reduction) in 24 hours. Importantly, peptide immobilization was not toxic to mammalian cells and did not affect the lens characteristics. Overall, our data suggest that both peptides have great potential to be developed as novel pharmaceuticals for prevention and treatment of CL-associated P. aeruginosa keratitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA