Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646518

RESUMEN

Dietary phytochemicals are particularly attractive for chemoprevention and are able to modulate several signal transduction pathways linked with cancer. Olive oil, a major component of the Mediterranean diet, is an abundant source of phenolic compounds. Olive oil production is associated with the generation of a waste material, termed 'olive mill wastewater' (OMWW) that have been reported to contain water-soluble polyphenols. Prostate cancer (PCa) is considered as an ideal cancer type for chemopreventive approaches, due to its wide incidence but relatively long latency period and progression time. Here, we investigated activities associated with potential preventive properties of a polyphenol-rich olive mill wastewater extract, OMWW (A009), on three in vitro models of PCa. A009 was able to inhibit PCa cell proliferation, adhesion, migration, and invasion. Molecularly, we found that A009 targeted NF-κB and reduced pro-angiogenic growth factor, VEGF, CXCL8, and CXCL12 production. IL-6/STAT3 axis was also regulated by the extract. A009 shows promising properties, and purified hydroxytyrosol (HyT), the major polyphenol component of A009, was also active but not always as effective as A009. Finally, our results support the idea of repositioning a food waste-derived material for nutraceutical employment, with environmental and industrial cost management benefits.


Asunto(s)
Inflamación/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Masculino , Invasividad Neoplásica/patología , Neovascularización Patológica/patología , Olea/química , Extractos Vegetales/química , Polifenoles/química , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Aguas Residuales/química
2.
J Exp Clin Cancer Res ; 42(1): 154, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365634

RESUMEN

BACKGROUND: Osteosarcoma (OS) is the most common primary bone tumor in children and adolescent. Surgery and multidrug chemotherapy are the standard of treatment achieving 60-70% of event-free survival for localized disease at diagnosis. However, for metastatic disease, the prognosis is dismal. Exploiting immune system activation in the setting of such unfavorable mesenchymal tumors represents a new therapeutic challenge. METHODS: In immune competent OS mouse models bearing two contralateral lesions, we tested the efficacy of intralesional administration of a TLR9 agonist against the treated and not treated contralateral lesion evaluating abscopal effect. Multiparametric flow cytometry was used to evaluate changes of the tumor immune microenviroment. Experiments in immune-deficient mice allowed the investigation of the role of adaptive T cells in TLR9 agonist effects, while T cell receptor sequencing was used to assess the expansion of specific T cell clones. RESULTS: TLR9 agonist strongly impaired the growth of locally-treated tumors and its therapeutic effect also extended to the contralateral, untreated lesion. Multiparametric flow cytometry showed conspicuous changes in the immune landscape of the OS immune microenvironment upon TLR9 engagement, involving a reduction in M2-like macrophages, paralleled by increased infiltration of dendritic cells and activated CD8 T cells in both lesions. Remarkably, CD8 T cells were needed for the induction of the abscopal effect, whereas they were not strictly necessary for halting the growth of the treated lesion. T cell receptor (TCR) sequencing of tumor infiltrating CD8 T cells showed the expansion of specific TCR clones in the treated tumors and, remarkably, their selected representation in the contralateral untreated lesions, providing the first evidence of the rewiring of tumor-associated T cell clonal architectures. CONCLUSIONS: Overall these data indicate that the TLR9 agonist acts as an in situ anti-tumor vaccine, activating an innate immune response sufficient to suppress local tumor growth while inducing a systemic adaptive immunity with selective expansion of CD8 T cell clones, which are needed for the abscopal effect.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Receptor Toll-Like 9/agonistas , Linfocitos T CD8-positivos , Inmunidad Adaptativa , Osteosarcoma/tratamiento farmacológico , Microambiente Tumoral
3.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359840

RESUMEN

Osteosarcoma (OS) is a high-grade malignant stromal tumor composed of mesenchymal cells producing osteoid and immature bone, with a peak of incidence in the second decade of life. Hence, although relatively rare, the social impact of this neoplasm is particularly relevant. Differently from carcinomas, molecular genetics and the role of the tumor microenvironment in the development and progression of OS are mainly unknown. Indeed, while the tumor microenvironment has been widely studied in other solid tumor types and its contribution to tumor progression has been definitely established, tumor-stroma interaction in OS has been quite neglected for years. Only recently have new insights been gained, also thanks to the availability of new technologies and bioinformatics tools. A better understanding of the cross-talk between the bone microenvironment, including immune and stromal cells, and OS will be key not only for a deeper knowledge of osteosarcoma pathophysiology, but also for the development of novel therapeutic strategies. In this review, we summarize the current knowledge about the tumor microenvironment in OS, mainly focusing on immune cells, discussing their role and implication for disease prognosis and treatment response.


Asunto(s)
Neoplasias Óseas/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Células Madre Mesenquimatosas/inmunología , Osteoclastos/inmunología , Osteosarcoma/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antineoplásicos/uso terapéutico , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Huesos/inmunología , Huesos/patología , Comunicación Celular/genética , Comunicación Celular/inmunología , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/patología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Osteoclastos/patología , Osteosarcoma/diagnóstico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Pronóstico , Transducción de Señal , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/patología
4.
J Exp Clin Cancer Res ; 38(1): 464, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718684

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. METHODS: The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. RESULTS: We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. CONCLUSIONS: Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible "repurposed agent' for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Asunto(s)
Acetilcarnitina/farmacología , Inductores de la Angiogénesis/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Regulación hacia Abajo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA