Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996459

RESUMEN

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Asunto(s)
Proteínas de Xenopus , Xenopus laevis , Humanos , Animales , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química , Multimerización de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Dominio BTB-POZ/genética , Cristalografía por Rayos X , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica , Modelos Moleculares , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células HEK293
2.
Nucleic Acids Res ; 51(10): 4942-4958, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37021552

RESUMEN

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.


Asunto(s)
ADN Glicosilasas , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/química , ADN Glicosilasas/metabolismo , Reparación del ADN
3.
J Biol Chem ; 299(7): 104870, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247759

RESUMEN

Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Humanos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
4.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192183

RESUMEN

DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.


Asunto(s)
ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Purinas/química , Purinas/farmacología , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Bacterias/enzimología , Sitios de Unión , Cristalografía por Rayos X , Reparación del ADN , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Tioxantenos/química , Tioxantenos/farmacología
5.
Nucleic Acids Res ; 43(12): 6099-111, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25999346

RESUMEN

The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , ARN Helicasas/metabolismo , Factor Rho/metabolismo , Terminación de la Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Mutantes/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , ARN Bicatenario/metabolismo , Factor Rho/química , Factor Rho/genética
6.
Biochem J ; 471(1): 13-23, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26392572

RESUMEN

The nucleoid-associated protein HU is involved in numerous DNA transactions and thus is essential in DNA maintenance and bacterial survival. The high affinity of HU for SSBs (single-strand breaks) has suggested its involvement in DNA protection, repair and recombination. SSB-containing DNA are major intermediates transiently generated by bifunctional DNA N-glycosylases that initiate the BER (base excision repair) pathway. Enzyme kinetics and DNA-binding experiments demonstrate that HU enhances the 8-oxoguanine-DNA glycosylase activity of Fpg (formamidopyrimidine-DNA glycosylase) by facilitating the release of the enzyme from its final DNA product (one nucleoside gap). We propose that the displacement of Fpg from its end-DNA product by HU is an active mechanism in which HU recognizes the product when it is still bound by Fpg. Through DNA binding, the two proteins interplay to form a transient ternary complex Fpg/DNA/HU which results in the release of Fpg and the molecular entrapment of SSBs by HU. These results support the involvement of HU in BER in vivo.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Guanina/análogos & derivados , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , ADN-Formamidopirimidina Glicosilasa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Guanina/metabolismo
7.
Nucleic Acids Res ; 42(16): 10748-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143530

RESUMEN

DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.


Asunto(s)
ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/química , Inhibidores Enzimáticos/química , Tioxantenos/química , Dedos de Zinc , Cristalografía por Rayos X , ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa/química , ADN-Formamidopirimidina Glicosilasa/metabolismo , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Oxidación-Reducción , Tioxantenos/farmacología , Zinc/metabolismo
8.
Nucleic Acids Res ; 40(7): 3197-207, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22139930

RESUMEN

Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.


Asunto(s)
ADN/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Unión a Telómeros/química , Factores de Transcripción/química , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Complejo Shelterina , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Difracción de Rayos X
9.
Nucleic Acids Res ; 39(14): 6277-90, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21486746

RESUMEN

DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.


Asunto(s)
ADN-Formamidopirimidina Glicosilasa/química , ADN/química , Hidantoínas/química , Dominio Catalítico , Daño del ADN , Modelos Moleculares , Unión Proteica
10.
Front Cell Dev Biol ; 11: 1124960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819096

RESUMEN

One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.

11.
Antimicrob Agents Chemother ; 56(2): 942-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22123696

RESUMEN

The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family. We here studied the DNA-binding activity of the RamR repressor with the ramA promoter (P(ramA)). As determined by high-resolution footprinting, the 28-bp-long RamR binding site covers essential features of P(ramA), including the -10 conserved region, the transcriptional start site of ramA, and two 7-bp inverted repeats. Based on the RamR footprint and on electrophoretic mobility shift assays (EMSAs), we propose that RamR interacts with P(ramA) as a dimer of dimers, in a fashion that is structurally similar to the QacR-DNA binding model. Surface plasmon resonance (SPR) measurements indicated that RamR has a 3-fold-lower affinity (K(D) [equilibrium dissociation constant] = 191 nM) for the 2-bp-deleted P(ramA) of an MDR S. Typhimurium clinical isolate than for the wild-type P(ramA) (K(D) = 66 nM). These results confirm the direct regulatory role of RamR in the repression of ramA transcription and precisely define how an alteration of its binding site can give rise to an MDR phenotype.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Regiones Promotoras Genéticas/genética , Salmonella typhimurium/efectos de los fármacos , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Sitios de Unión/genética , Bovinos , Proteínas de Unión al ADN/genética , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Unión Proteica , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Sci Rep ; 12(1): 7101, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501371

RESUMEN

Liquid droplets of a host protein, formed by liquid-liquid phase separation, recruit guest proteins and provide functional fields. Recruitment into p53 droplets is similar between disordered and folded guest proteins, whereas the diffusion of guest proteins inside droplets depends on their structural types. In this study, to elucidate how the recruitment and diffusion properties of guest proteins are affected by a host protein, we characterized the properties of guest proteins in fused in sarcoma (FUS) droplets using single-molecule fluorescence microscopy in comparison with p53 droplets. Unlike p53 droplets, disordered guest proteins were recruited into FUS droplets more efficiently than folded guest proteins, suggesting physical exclusion of the folded proteins from the small voids of the droplet. The recruitment did not appear to depend on the physical parameters (electrostatic or cation-π) of guests, implying that molecular size exclusion limits intermolecular interaction-assisted uptake. The diffusion of disordered guest proteins was comparable to that of the host FUS, whereas that of folded proteins varied widely, similar to the results for host p53. The scaling exponent of diffusion highlights the molecular sieving of large folded proteins in droplets. Finally, we proposed a molecular recruitment and diffusion model for guest proteins in FUS droplets.


Asunto(s)
Proteína FUS de Unión a ARN , Proteína p53 Supresora de Tumor , Difusión , Proteína FUS de Unión a ARN/metabolismo , Imagen Individual de Molécula , Electricidad Estática
13.
Eur Biophys J ; 40(2): 117-29, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20936276

RESUMEN

The histone-like HU protein is the major nucleoid-associated protein involved in the dynamics and structure of the bacterial chromosome. Under physiological conditions, the three possible dimeric forms of the E. coli HU protein (EcHUα2, EcHUß2, and EcHUαß) are in thermal equilibrium between two dimeric conformations (N2 ↔ I2) varying in their secondary structure content. High-temperature molecular dynamics simulations combined with NMR experiments provide information about structural and dynamics features at the atomic level for the N2 to I2 thermal transition of the EcHUß2 homodimer. On the basis of these data, a realistic 3D model is proposed for the major I2 conformation of EcHUß2. This model is in agreement with previous experimental data.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Desnaturalización Proteica , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Calor , Espectroscopía de Resonancia Magnética , Conformación Proteica , Factores de Tiempo
14.
FEBS Open Bio ; 11(6): 1739-1756, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33932137

RESUMEN

Beta-microseminoproteins (MSMBs) are small disulfide-rich proteins that are conserved among vertebrates. These proteins exhibit diverse biological activities and were mainly reported to play a role in male fertility, immunity, and embryogenesis. In this work, we focused on the chicken MSMB3 protein that was previously depicted as an egg antibacterial protein. We report that MSMB3 protein is exclusively expressed in the reproductive tissues of laying hens (in contrast to chicken MSMB1 and MSMB2 paralogs), to be incorporated in the egg white during the process of egg formation. We also showed that chicken MSMB3 possesses highly conserved orthologs in bird species, including Neognathae and Palaeognathae. Chicken MSMB3 was purified from egg white using heparin affinity chromatography and was analyzed by top-down and bottom-up proteomics. Several proteoforms could be characterized, and a homodimer was further evidenced by NMR spectroscopy. The X-ray structure of chicken MSMB3 was solved for the first time, revealing that this protein adopts a novel dimeric arrangement. The highly cationic MSMB3 protein exhibits a distinct electrostatic distribution compared with chicken MSMB1 and MSMB2 structural models, and with published mammalian MSMB structures. The specific incorporation of MSMB3 paralog in the egg, and its phylogenetic conservation in birds together with its peculiar homodimer arrangement and physicochemical properties, suggests that the MSMB3 protein has evolved to play a critical role during the embryonic development of avian species. These new data are likely to stimulate research to elucidate the structure/function relationships of MSMB paralogs and orthologs in the animal kingdom.


Asunto(s)
Huevos , Proteínas de Secreción Prostática/química , Secuencia de Aminoácidos , Animales , Pollos , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Secreción Prostática/genética , Proteínas de Secreción Prostática/metabolismo , Alineación de Secuencia
15.
Sci Rep ; 11(1): 19323, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588591

RESUMEN

Despite the continuous discovery of host and guest proteins in membraneless organelles, complex host-guest interactions hinder the understanding of the molecular grammar governing liquid-liquid phase separation. In this study, we characterized the localization and dynamic properties of guest proteins in liquid droplets using single-molecule fluorescence microscopy. Eighteen guest proteins of different sizes, structures, and oligomeric states were examined in host p53 liquid droplets. Recruitment did not significantly depend on the structural properties of the guest proteins, but was moderately correlated with their length, total charge, and number of R and Y residues. In contrast, the diffusion of disordered guest proteins was comparable to that of host p53, whereas that of folded proteins varied widely. Molecular dynamics simulations suggest that folded proteins diffuse within the voids of the liquid droplet while interacting weakly with neighboring host proteins, whereas disordered proteins adapt their structures to form tight interactions with the host proteins. Our study provides insights into the key molecular principles of the localization and dynamics of guest proteins in liquid droplets.


Asunto(s)
Condensados Biomoleculares/química , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/ultraestructura , Microscopía Fluorescente , Simulación de Dinámica Molecular , Mutación , Orgánulos/ultraestructura , Transición de Fase , Pliegue de Proteína , Multimerización de Proteína/genética , Imagen Individual de Molécula , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/ultraestructura
16.
Viruses ; 12(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867106

RESUMEN

The non-structural protein NS1 of influenza A viruses is an RNA-binding protein of which its activities in the infected cell contribute to the success of the viral cycle, notably through interferon antagonism. We have previously shown that NS1 strongly binds RNA aptamers harbouring virus-specific sequence motifs (Marc et al., Nucleic Acids Res. 41, 434-449). Here, we started out investigating the putative role of one particular virus-specific motif through the phenotypic characterization of mutant viruses that were genetically engineered from the parental strain WSN. Unexpectedly, our data did not evidence biological importance of the putative binding of NS1 to this specific motif (UGAUUGAAG) in the 3'-untranslated region of its own mRNA. Next, we sought to identify specificity determinants in the NS1-RNA interaction through interaction assays in vitro with several RNA ligands and through solving by X-ray diffraction the 3D structure of several complexes associating NS1's RBD with RNAs of various affinities. Our data show that the RBD binds the GUAAC motif within double-stranded RNA helices with an apparent specificity that may rely on the sequence-encoded ability of the RNA to bend its axis. On the other hand, we showed that the RBD binds to the virus-specific AGCAAAAG motif when it is exposed in the apical loop of a high-affinity RNA aptamer, probably through a distinct mode of interaction that still requires structural characterization. Our data are consistent with more than one mode of interaction of NS1's RBD with RNAs, recognizing both structure and sequence determinants.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H7N1 del Virus de la Influenza A/química , ARN Viral/química , ARN/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 3' , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Línea Celular , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , ARN/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Técnica SELEX de Producción de Aptámeros
17.
Biochim Biophys Acta ; 1784(7-8): 1050-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18424274

RESUMEN

In order to preserve their genome integrity, organisms have developed elaborate tactics for genome protection and repair. The Deinococcus radiodurans bacteria famous for their extraordinary tolerance toward high doses of radiations or long period of desiccation, possess some specific genes with unknown function which are related to their survival in such extreme conditions. Among them, ddrA is an orphan gene specific of Deinococcus genomes. DdrA, the product of this gene was suggested to be a component of the DNA end protection system. Here we provide a three-dimensional reconstruction of the Deinococcus deserti DdrA((1-160)) by electron microscopy. Although not functional in vivo, this truncated protein keeps its DNA binding ability at the wild-type level. DdrA((1-160)) has a complex three-dimensional structure based on a heptameric ring that can self-associate to form a larger molecular weight assembly. We suggest that the complex architecture of DdrA plays a role in the substrate specificity and favors an efficient DNA repair.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/efectos de la radiación , Tolerancia a Radiación/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Secuencia de Bases , Cartilla de ADN , Deinococcus/química , Microscopía Electrónica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Conformación Proteica , Homología de Secuencia de Aminoácido
18.
Chem Biol ; 15(7): 706-17, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-18635007

RESUMEN

Fpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them. To accommodate the steric hindrance of the benzyl group, Fpg selects the adequate rotamer of the extrahelical Bz-cFapydG formamido group, forcing the bulky group to go outside the binding pocket. Contrary to the binding mode of cFapydG, the particular recognition of Bz-cFapydG leads the BER enzymes to unproductive complexes which would hide the lesion and slow down its repair by the NER machinery.


Asunto(s)
Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/fisiología , Proteínas de Escherichia coli/fisiología , Secuencia de Aminoácidos , Bioquímica/métodos , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , ADN-Formamidopirimidina Glicosilasa/química , Proteínas de Escherichia coli/química , Humanos , Cinética , Modelos Químicos , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Estereoisomerismo
19.
Sci Rep ; 9(1): 14253, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582767

RESUMEN

MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN de Archaea/metabolismo , Proteínas de Unión al ADN/metabolismo , Methanosarcina/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Arqueales/química , ADN de Archaea/química , Proteínas de Unión al ADN/química , Methanosarcina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Ribonucleoproteínas/química
20.
J Am Soc Mass Spectrom ; 29(10): 1981-1994, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066268

RESUMEN

Native mass spectrometry (MS) encompasses methods to keep noncovalent interactions of biomolecular complexes intact in the gas phase throughout the instrument and to measure the mass-to-charge ratios of supramolecular complexes directly in the mass spectrometer. Electrospray ionization (ESI) in nondenaturing conditions is now an established method to characterize noncovalent systems. Matrix-assisted laser desorption/ionization (MALDI), on the other hand, consumes low quantities of samples and largely tolerates contaminants, making it a priori attractive for native MS. However, so-called native MALDI approaches have so far been based on solid deposits, where the rapid transition of the sample through a solid state can engender the loss of native conformations. Here we present a new method for native MS based on liquid deposits and MALDI ionization, unambiguously detecting intact noncovalent protein complexes by direct desorption from a liquid spot for the first time. To control for aggregation, we worked with HUαß, a heterodimer that does not spontaneously rearrange into homodimers in solution. Screening through numerous matrix solutions to observe first the monomeric protein, then the dimer complex, we settled on a nondenaturing binary matrix solution composed of acidic and basic organic matrices in glycerol, which is stable in vacuo. The role of temporal and spatial laser irradiation patterns was found to be critical. Both a protein-protein and a protein-ligand complex could be observed free of aggregation. To minimize gas-phase dissociation, source parameters were optimized to achieve a conservation of complexes above 50% for both systems. Graphical Abstract ᅟ.


Asunto(s)
Complejos Multiproteicos/análisis , Complejos Multiproteicos/química , Proteínas/análisis , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biotina , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteínas/metabolismo , Estreptavidina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA