Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38294314

RESUMEN

The utility of UiO-67 Metal-Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF-analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the µ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(µ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone's ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.

2.
bioRxiv ; 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34189531

RESUMEN

The ongoing COVID-19 pandemic has highlighted the dearth of approved drugs to treat viral infections, with only ∼90 FDA approved drugs against human viral pathogens. To identify drugs that can block SARS-CoV-2 replication, extensive drug screening to repurpose approved drugs is underway. Here, we screened ∼18,000 drugs for antiviral activity using live virus infection in human respiratory cells. Dose-response studies validate 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Amongst these drug candidates are 16 nucleoside analogs, the largest category of clinically used antivirals. This included the antiviral Remdesivir approved for use in COVID-19, and the nucleoside Molnupirivir, which is undergoing clinical trials. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral, and we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogs synergistically inhibits SARS-CoV-2 infection in vitro and in vivo suggesting a clinical path forward.

3.
Cell Rep ; 35(1): 108959, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811811

RESUMEN

There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ciclosporina/farmacología , Reposicionamiento de Medicamentos , Células Epiteliales/metabolismo , Pulmón/metabolismo , SARS-CoV-2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/patología , Chlorocebus aethiops , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Pulmón/patología , Pulmón/virología , Serina Endopeptidasas/metabolismo , Estados Unidos , United States Food and Drug Administration , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA