Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Nematol ; 56(1): 20240019, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38855080

RESUMEN

Strongyloides stercoralis, commonly known as the human threadworm, is a skin-penetrating gastrointestinal parasitic nematode that infects hundreds of millions of people worldwide. Like other Strongyloides species, S. stercoralis is capable of cycling through a single free-living generation. Although S. stercoralis and the free-living nematode Caenorhabditis elegans are evolutionarily distant, the free-living adults of S. stercoralis are similar enough in size and morphology to C. elegans adults that techniques for generating transgenics and knockouts in C. elegans have been successfully adapted for use in S. stercoralis. High-quality genomic and transcriptomic data are also available for S. stercoralis. Thus, one can use a burgeoning array of functional genomic tools in S. stercoralis to probe questions about parasitic nematode development, physiology, and behavior. Knowledge gained from S. stercoralis will inform studies of other parasitic nematodes such as hookworms that are not yet amenable to genetic manipulation. This review describes the basic anatomy of S. stercoralis.

2.
Proc Natl Acad Sci U S A ; 117(30): 17913-17923, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32651273

RESUMEN

Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.


Asunto(s)
Células Quimiorreceptoras/fisiología , Interacciones Huésped-Parásitos , Nematodos/fisiología , Infecciones por Nematodos/etiología , Piel/parasitología , Animales , Conducta Animal , Dióxido de Carbono , Humanos , Estadios del Ciclo de Vida , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Strongyloides stercoralis/patogenicidad , Strongyloides stercoralis/fisiología , Temperatura
3.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034038

RESUMEN

Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.


Asunto(s)
Nematodos , Animales , Técnicas de Transferencia de Gen , Genómica , Humanos , Mamíferos , Nematodos/genética , Interferencia de ARN
4.
PLoS Pathog ; 13(11): e1006709, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29190282

RESUMEN

Parasitic nematodes of humans and livestock cause extensive disease and economic loss worldwide. Many parasitic nematodes infect hosts as third-stage larvae, called iL3s. iL3s vary in their infection route: some infect by skin penetration, others by passive ingestion. Skin-penetrating iL3s actively search for hosts using host-emitted olfactory cues, but the extent to which passively ingested iL3s respond to olfactory cues was largely unknown. Here, we examined the olfactory behaviors of the passively ingested murine gastrointestinal parasite Heligmosomoides polygyrus. H. polygyrus iL3s were thought to reside primarily on mouse feces, and infect when mice consume feces containing iL3s. However, iL3s can also adhere to mouse fur and infect orally during grooming. Here, we show that H. polygyrus iL3s are highly active and show robust attraction to host feces. Despite their attraction to feces, many iL3s migrate off feces to engage in environmental navigation. In addition, H. polygyrus iL3s are attracted to mammalian skin odorants, suggesting that they migrate toward hosts. The olfactory preferences of H. polygyrus are flexible: some odorants are repulsive for iL3s maintained on feces but attractive for iL3s maintained off feces. Experience-dependent modulation of olfactory behavior occurs over the course of days and is mediated by environmental carbon dioxide (CO2) levels. Similar experience-dependent olfactory plasticity occurs in the passively ingested ruminant-parasitic nematode Haemonchus contortus, a major veterinary parasite. Our results suggest that passively ingested iL3s migrate off their original fecal source and actively navigate toward hosts or new host fecal sources using olfactory cues. Olfactory plasticity may be a mechanism that enables iL3s to switch from dispersal behavior to host-seeking behavior. Together, our results demonstrate that passively ingested nematodes do not remain inactive waiting to be swallowed, but rather display complex sensory-driven behaviors to position themselves for host ingestion. Disrupting these behaviors may be a new avenue for preventing infections.


Asunto(s)
Haemonchus , Interacciones Huésped-Parásitos/inmunología , Parasitosis Intestinales/parasitología , Nematospiroides dubius , Animales , Quimiotaxis/inmunología , Interacciones Huésped-Parásitos/fisiología , Larva/inmunología , Odorantes
5.
PLoS Pathog ; 13(10): e1006675, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29016680

RESUMEN

Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas Musculares/metabolismo , Mutagénesis/genética , Strongyloides ratti/genética , Strongyloides stercoralis/genética , Animales , Animales Modificados Genéticamente , Proteínas de Unión a Calmodulina/genética , Ingeniería Genética/métodos , Humanos , Proteínas Musculares/genética , Ratas
6.
PLoS Pathog ; 10(8): e1004305, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121736

RESUMEN

Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an important role for olfaction in host selection. Our results may enable the development of new strategies for combating harmful nematode infections.


Asunto(s)
Quimiotaxis/fisiología , Interacciones Huésped-Parásitos/fisiología , Nematodos/fisiología , Infecciones por Nematodos , Piel/parasitología , Animales , Escarabajos/parasitología , Gerbillinae , Humanos , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
7.
G3 (Bethesda) ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839055

RESUMEN

The skin-penetrating gastrointestinal parasitic nematode Strongyloides stercoralis causes strongyloidiasis, which is a neglected tropical disease that is associated with severe chronic illness and fatalities. Unlike other human-infective nematodes, S. stercoralis cycles through a single free-living generation and thus serves as a genetically tractable model organism for understanding the mechanisms that enable parasitism. Techniques such as CRISPR/Cas9-mediated mutagenesis and transgenesis are now routinely performed in S. stercoralis by introducing exogenous DNA into free-living adults and then screening their F1 progeny for transgenic or mutant larvae. However, transgenesis in S. stercoralis has been severely hindered by the inability to establish stable transgenic lines that can be propagated for multiple generations through a host; to date, studies of transgenic S. stercoralis have been limited to heterogeneous populations of transgenic F1 larvae. Here, we develop an efficient pipeline for the generation of stable transgenic lines in S. stercoralis. We also show that this approach can be used to efficiently generate stable transgenic lines in the rat-infective nematode Strongyloides ratti. The ability to generate stable transgenic lines circumvents the limitations of working with heterogeneous F1 populations, such as variable transgene expression and the inability to generate transgenics of all life stages. Our transgenesis approach will enable novel lines of inquiry into parasite biology, such as transgene-based comparisons between free-living and parasitic generations.

8.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585813

RESUMEN

Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking, intra-host development, and intra-host navigation - three crucial steps of the parasite-host interaction - remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting parasite-host interactions in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons are depolarized by CO2 in iL3s and iL3as. In addition, we demonstrate that the receptor guanylate cyclase Ss-GCY-9 is expressed specifically in CO2-sensing neurons and is required for CO2-evoked behavior. Ss-GCY-9 also promotes activation, indicating that a single receptor can mediate both behavioral and physiological responses to CO2. Our results illuminate chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.

9.
PLoS Pathog ; 5(4): e1000370, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19360119

RESUMEN

Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C. elegans. Using transgenesis, we investigated the role of FKTF-1 in S. stercoralis' infective larval development. In first-stage larvae, GFP-tagged recombinant FKTF-1b localizes to the pharynx and hypodermis, tissues remodeled in infective larvae. Activating and inactivating mutations at predicted AKT phosphorylation sites on FKTF-1b give constitutive cytoplasmic and nuclear localization of the protein, respectively, indicating that its post-translational regulation is similar to other FOXO-class transcription factors. Mutant constructs designed to interfere with endogenous FKTF-1b function altered the intestinal and pharyngeal development of the larvae and resulted in some transgenic larvae failing to arrest in the infective stage. Our findings indicate that FKTF-1b is required for proper morphogenesis of S. stercoralis infective larvae and support the overall hypothesis of similar regulation of dauer development in C. elegans and the formation of infective larvae in parasitic nematodes.


Asunto(s)
Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Strongyloides stercoralis/crecimiento & desarrollo , Strongyloides stercoralis/genética , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Vis Exp ; (176)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34694289

RESUMEN

The genus Strongyloides consists of multiple species of skin-penetrating nematodes with different host ranges, including Strongyloides stercoralis and Strongyloides ratti. S. stercoralis is a human-parasitic, skin-penetrating nematode that infects approximately 610 million people, while the rat parasite S. ratti is closely related to S. stercoralis and is often used as a laboratory model for S. stercoralis. Both S. stercoralis and S. ratti are easily amenable to the generation of transgenics and knockouts through the exogenous nucleic acid delivery technique of intragonadal microinjection, and as such, have emerged as model systems for other parasitic helminths that are not yet amenable to this technique. Parasitic Strongyloides adults inhabit the small intestine of their host and release progeny into the environment via the feces. Once in the environment, the larvae develop into free-living adults, which live in feces and produce progeny that must find and invade a new host. This environmental generation is unique to the Strongyloides species and similar enough in morphology to the model free-living nematode Caenorhabditis elegans that techniques developed for C. elegans can be adapted for use with these parasitic nematodes, including intragonadal microinjection. Using intragonadal microinjection, a wide variety of transgenes can be introduced into Strongyloides. CRISPR/Cas9 components can also be microinjected to create mutant Strongyloides larvae. Here, the technique of intragonadal microinjection into Strongyloides, including the preparation of free-living adults, the injection procedure, and the selection of transgenic progeny, is described. Images of transgenic Strongyloides larvae created using CRISPR/Cas9 mutagenesis are included. The aim of this paper is to enable other researchers to use microinjection to create transgenic and mutant Strongyloides.


Asunto(s)
Strongyloides ratti , Strongyloides stercoralis , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Humanos , Microinyecciones , Ratas
11.
Curr Biol ; 28(14): 2338-2347.e6, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017486

RESUMEN

Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.


Asunto(s)
Ancylostoma/fisiología , Conducta de Búsqueda de Hospedador/fisiología , Strongyloides stercoralis/fisiología , Sensación Térmica/fisiología , Ancylostoma/crecimiento & desarrollo , Anquilostomiasis/parasitología , Animales , Humanos , Larva/crecimiento & desarrollo , Larva/fisiología , Strongyloides stercoralis/crecimiento & desarrollo , Estrongiloidiasis/parasitología , Taxia/fisiología
12.
Genetics ; 189(4): 1327-39, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21954162

RESUMEN

Many animals sense environmental gases such as carbon dioxide and oxygen using specialized populations of gas-sensing neurons. The proper development and function of these neurons is critical for survival, as the inability to respond to changes in ambient carbon dioxide and oxygen levels can result in reduced neural activity and ultimately death. Despite the importance of gas-sensing neurons for survival, little is known about the developmental programs that underlie their formation. Here we identify the ETS-family transcription factor ETS-5 as critical for the normal differentiation of the carbon dioxide-sensing BAG neurons in Caenorhabditis elegans. Whereas wild-type animals show acute behavioral avoidance of carbon dioxide, ets-5 mutant animals do not respond to carbon dioxide. The ets-5 gene is expressed in BAG neurons and is required for the normal expression of the BAG neuron gene battery. ets-5 may also autoregulate its expression in BAG neurons. ets-5 is not required for BAG neuron formation, indicating that it is specifically involved in BAG neuron differentiation and the maintenance of BAG neuron cell fate. Our results demonstrate a novel role for ETS genes in the development and function of gas-detecting sensory neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dióxido de Carbono/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Genes Reporteros , Neuronas/citología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA