Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neuroimage ; 233: 117975, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33762217

RESUMEN

Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals' brain data into a common model space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The dimensions of this common model capture functional profiles that are shared across individuals such as cortical response profiles collected during a common time-locked stimulus presentation (e.g. movie viewing) or functional connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive transformations that project individuals' neural data from anatomical space into the common model space. Previously, only response or connectivity profiles were used in the derivation of these transformations. In this study, we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that aligns response-based information as well as or better than response hyperalignment while simultaneously aligning connectivity-based information better than connectivity hyperalignment. These results suggest that a single common information space can encode both shared cortical response and functional connectivity profiles across individuals.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Películas Cinematográficas , Red Nerviosa/diagnóstico por imagen , Adulto , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Estimulación Luminosa/métodos
2.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503232

RESUMEN

Functional connectivity (FC) is the most popular method for recovering functional networks of brain areas with fMRI. However, because FC is defined as temporal correlations in brain activity, FC networks are confounded by noise and lack a precise functional role. To overcome these limitations, we developed model connectivity (MC). MC is defined as similarities in encoding model weights, which quantify reliable functional activity in terms of interpretable stimulus- or task-related features. To compare FC and MC, both methods were applied to a naturalistic story listening dataset. FC recovered spatially broad networks that are confounded by noise, and that lack a clear role during natural language comprehension. By contrast, MC recovered spatially localized networks that are robust to noise, and that represent distinct categories of semantic concepts. Thus, MC is a powerful data-driven approach for recovering and interpreting the functional networks that support complex cognitive processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA