Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Hum Genet ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39293448

RESUMEN

Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.

2.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391249

RESUMEN

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Asunto(s)
Lactancia , Glándulas Mamarias Animales , Animales , Femenino , Ratones , Embarazo , Células Epiteliales/metabolismo , Lactancia/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Mutación/genética
3.
Biol Reprod ; 110(1): 78-89, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37776549

RESUMEN

The kinesin light chain 3 protein (KLC3) is the only member of the kinesin light chain protein family that was identified in post-meiotic mouse male germ cells. It plays a role in the formation of the sperm midpiece through its association with both spermatid mitochondria and outer dense fibers (ODF). Previous studies showed a significant correlation between its expression level and sperm motility and quantitative semen parameters in humans, while the overexpression of a KLC3-mutant protein unable to bind ODF also affected the same traits in mice. To further assess the role of KLC3 in fertility, we used CRISPR/Cas9 genome editing in mice and investigated the phenotypes induced by the invalidation of the gene or of a functional domain of the protein. Both approaches gave similar results, i.e. no detectable change in male or female fertility. Testis histology, litter size and sperm count were not altered. Apart from the line-dependent alterations of Klc3 mRNA levels, testicular transcriptome analysis did not reveal any other changes in the genes tested. Western analysis supported the absence of KLC3 in the gonads of males homozygous for the inactivating mutation and a strong decrease in expression in males homozygous for the allele lacking one out of the five tetratricopeptide repeats. Overall, these observations raise questions about the supposedly critical role of this kinesin in reproduction, at least in mice where its gene mutation or inactivation did not translate into fertility impairment.


Asunto(s)
Cinesinas , Motilidad Espermática , Animales , Femenino , Humanos , Masculino , Ratones , Fertilidad/genética , Cinesinas/genética , Cinesinas/metabolismo , Ratones Noqueados , Mutación , Proteínas/metabolismo , Semen , Motilidad Espermática/genética , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Testículo/metabolismo
4.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589873

RESUMEN

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Ratones , Animales , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , beta Catenina/metabolismo , Glucocorticoides , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Fenotipo , Pronóstico , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
5.
Vet Res ; 55(1): 105, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227993

RESUMEN

The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitoring of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibility to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distribution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal with a non-synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer showed greater variation with two non-synonymous substitutions (T98A; Q226E), three synonymous substitutions (codons 21, 78 and 136) and a new 24pb deletion (Δ69-77). We found significant regional variations between French regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting multiple non-synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the existence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these two species.


Asunto(s)
Ciervos , Sistemas de Lectura Abierta , Animales , Francia , Polimorfismo Genético , Priones/genética , Enfermedad Debilitante Crónica/genética , Proteínas Priónicas/genética
6.
Biol Reprod ; 109(4): 408-414, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37561421

RESUMEN

Gene knockout experiments have shown that many genes are dispensable for a given biological function. In this review, we make an assessment of male and female germ cell-specific genes dispensable for the function of reproduction in mice, the inactivation of which does not affect fertility. In particular, we describe the deletion of a 1 Mb block containing nineteen paralogous genes of the oogenesin/Pramel family specifically expressed in female and/or male germ cells, which has no consequences in both sexes. We discuss this notion of dispensability and the experiments that need to be carried out to definitively conclude that a gene is dispensable for a function.


Asunto(s)
Infertilidad Masculina , Testículo , Animales , Femenino , Masculino , Ratones , Fertilidad/genética , Células Germinativas , Infertilidad Masculina/genética , Ratones Noqueados , Reproducción , Espermatogénesis/genética
7.
J Nutr ; 153(10): 2808-2826, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543213

RESUMEN

BACKGROUND: Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE: This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS: The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS: At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 µM compared with 6.9 µM; P < 0.05), and sphingomyelin concentrations (163.7 µM compared with 76.3 µM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS: miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.

8.
PLoS Pathog ; 16(7): e1008283, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702070

RESUMEN

Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism.


Asunto(s)
Proteínas Priónicas/metabolismo , Bazo/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , Enfermedades por Prión/metabolismo
9.
Vet Res ; 53(1): 54, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799279

RESUMEN

The Shadoo and PrP prion protein family members are thought to be functionally related, but previous knockdown/knockout experiments in early mouse embryogenesis have provided seemingly contradictory results. In particular, Shadoo was found to be indispensable in the absence of PrP in knockdown analyses, but a double-knockout of the two had little phenotypic impact. We investigated this apparent discrepancy by comparing transcriptomes of WT, Prnp0/0 and Prnp0/0Sprn0/0 E6.5 mouse embryos following inoculation by Sprn- or Prnp-ShRNA lentiviral vectors. Our results suggest the possibility of genetic adaptation in Prnp0/0Sprn0/0 mice, thus providing a potential explanation for their previously observed resilience.


Asunto(s)
Proteínas Priónicas , Priones , Animales , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Priónicas/genética , Priones/genética , ARN Interferente Pequeño , Proteínas Recombinantes , Factores de Transcripción
10.
Cell Mol Life Sci ; 78(5): 2157-2167, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32875355

RESUMEN

Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Adhesiones Focales/genética , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/genética , Proteínas Priónicas/genética , Animales , Carnitina O-Palmitoiltransferasa/deficiencia , Células Cultivadas , Adhesiones Focales/metabolismo , Humanos , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Enfermedades Musculares/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Oxidación-Reducción , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/deficiencia , Interferencia de ARN , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
11.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33713980

RESUMEN

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Priónicas/metabolismo , Reproducción/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Desarrollo Embrionario , Femenino , Proteínas Ligadas a GPI , Genes Letales , Lactancia/genética , Lactancia/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Placentación , Embarazo , Proteínas Priónicas/deficiencia , Proteínas Priónicas/genética , Reproducción/genética , Transcriptoma
12.
PLoS Genet ; 13(4): e1006597, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28376083

RESUMEN

Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.


Asunto(s)
Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Polineuropatías/genética , Proteómica , Sustitución de Aminoácidos/genética , Animales , Bovinos , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fenotipo , Polineuropatías/patología , Polineuropatías/veterinaria
13.
Biochem Biophys Res Commun ; 512(2): 283-288, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30879769

RESUMEN

During lactation, mammary epithelial cells secrete fat in the form of milk fat globules that originate from intracellular lipid droplets. These droplets may form de novo from the endoplasmic reticulum or be derived from existing lipid droplets; they then either grow because enzymes of triacylglycerol synthesis relocate from the reticulum to their surface, or due to fusion and fission with other droplets. The overexpression of miR-30b-5p in the developing mouse mammary gland impairs lactation, which includes an increase in lipid droplet size. This study was performed to understand the origin of this defect affecting lipid droplets observed in transgenic mice. Electron microscopy analyses revealed a fragmented and discontinued tubular network of endoplasmic reticulum in the mammary epithelial cells of transgenic mice. The milk fatty acid composition was modified, with lower levels of medium-chain saturated fatty acids and a proportional increase in long-chain monounsaturated fatty acids in transgenic versus wild-type mice. Further, investigations of microRNA targets revealed a significant downregulation of ATLASTIN 2 (a GTPase described as playing a key role in lipid droplet formation) due to miR-30b-5p overexpression. Our results suggest that the increase in lipid droplet size observed in the mammary epithelial cells of transgenic mice might result from changes to lipid droplet formation and secretion because of direct modifications to Atl2 expression and indirect changes to endoplasmic reticulum morphology resulting from the overexpression of miR-30b-5p.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Gotas Lipídicas/metabolismo , Glándulas Mamarias Animales/metabolismo , MicroARNs/genética , Animales , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Ácidos Grasos/metabolismo , Femenino , GTP Fosfohidrolasas/genética , Glándulas Mamarias Animales/citología , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Microscopía Electrónica de Transmisión , Leche/metabolismo , Regulación hacia Arriba
14.
Biochem Biophys Res Commun ; 516(1): 258-263, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31230751

RESUMEN

DNAJC2 protein, also known as ZRF1 or MPP11, acts both as chaperone and as chromatin regulator. It is involved in stem cell differentiation and its expression is associated with various cancer malignancies. However, the role of Dnajc2 gene during mouse embryogenesis has not been assessed so far. To this aim, we invalidated Dnajc2 gene in FVB/Nj mice using the CrispR/Cas9 approach. We showed that this invalidation leads to the early post-implantation lethality of the nullizygous embryos. Furthermore, using siRNAs against Dnajc2 in mouse 1-cell embryos, we showed that maternal Dnajc2 mRNAs may allow for the early preimplantation development of these embryos. Altogether, these data demonstrate for the first time the requirement of DNAJC2 for early mouse embryogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Ratones/embriología , Chaperonas Moleculares/genética , Proteínas de Unión al ARN/genética , Animales , Sistemas CRISPR-Cas , Implantación del Embrión , Pérdida del Embrión/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Eliminación de Gen , Ratones/genética , Embarazo
15.
J Virol ; 90(3): 1638-46, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608316

RESUMEN

UNLABELLED: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE: Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Enfermedades por Prión/patología , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Mutación Missense , Eliminación de Secuencia , Ovinos
16.
RNA Biol ; 12(1): 26-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763824

RESUMEN

Recent reports have shown that ingested microRNAs may be transferred to blood, accumulate in tissues and exert canonical regulation on endogenous transcripts. In spite of several attempts to replicate these findings, they have not been confirmed and several questions remain. By using a transgenic mouse model presenting a high level of miR-30b in milk, the horizontal delivery of this microRNA via oral ingestion was studied in pups. Our findings demonstrated that, although very high levels of miR-30b were found in milk and in stomach contents of the pups, we did not detect an increase in miR-30b in tissues of pups fed by transgenic females compared to pups fed by wild-type females.


Asunto(s)
Mucosa Intestinal/metabolismo , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Leche/química , Animales , Humanos , Ratones , Ratones Transgénicos
17.
PLoS One ; 19(9): e0309974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231187

RESUMEN

Azoospermia (the complete absence of spermatozoa in the semen) is a common cause of male infertility. The etiology of azoospermia is poorly understood. Whole-genome analysis of azoospermic men has identified a number of candidate genes, such as the X-linked testis-expressed 11 (TEX11) gene. Using a comparative genomic hybridization array, an exonic deletion (exons 10-12) of TEX11 had previously been identified in two non-apparent azoospermic patients. However, the putative impact of this genetic alteration on spermatogenesis and the azoospermia phenotype had not been validated functionally. We therefore used a CRISPR/Cas9 system to generate a mouse model (Tex11Ex9-11del/Y) with a partial TEX11 deletion that mimicked the human mutation. Surprisingly, the mutant male Tex11Ex9-11del/Y mice were fertile. The sperm concentration, motility, and morphology were normal. Similarly, the mutant mouse line's testis transcriptome was normal, and the expression of spermatogenesis genes was not altered. These results suggest that the mouse equivalent of the partial deletion observed in two infertile male with azoospermia has no impact on spermatogenesis or fertility in mice, at least of a FVB/N genetic background and until 10 months of age. Mimicking a human mutation does not necessarily lead to the same human phenotype in mice, highlighting significant differences species.


Asunto(s)
Azoospermia , Meiosis , Espermatogénesis , Animales , Masculino , Ratones , Espermatogénesis/genética , Meiosis/genética , Azoospermia/genética , Azoospermia/patología , Infertilidad Masculina/genética , Eliminación de Secuencia , Humanos , Testículo/metabolismo , Testículo/patología , Sistemas CRISPR-Cas
18.
Biochem Biophys Res Commun ; 412(4): 752-6, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21871438

RESUMEN

The protein Shadoo (Sho) is a paralogue of prion protein, and encoded by the gene Sprn. Like prion protein it is primarily expressed in central nervous system, and has been shown to have a similar expression pattern in certain regions of the brain. We have generated reporter mice carrying a transgene encompassing the Sprn promoter, exon 1, intron 1 and the 5'-end of exon 2 driving expression of either the LacZ or GFP reporter gene to study the expression profile of Shadoo in mice. Expression of the reporter genes was analysed in brains of these transgenic mice and was shown to mimic that of the endogenous gene expression, previously described by Watts et al. [1]. Consequently, the Sprn-LacZ mice were used to study the spatial expression of Sho in other tissues of the adult mouse. Several tissues were collected and stained for ß-gal activity, including the thymus, heart, lung, liver, kidney, spleen, intestine, muscle, and gonads. From this array of tissues, the transgene was consistently expressed only in specific cell types of the testicle and ovary, suggesting a role for Shadoo in fertility and reproduction. These mice may serve as a useful tool in deciphering the regulation of the prion-like gene Sprn and thus, indirectly, of the Shadoo protein.


Asunto(s)
Gónadas/metabolismo , Proteínas del Tejido Nervioso/genética , Priones/genética , Animales , Proteínas Ligadas a GPI , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Distribución Tisular , beta-Galactosidasa/genética
19.
Biochem Biophys Res Commun ; 416(1-2): 184-7, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22093825

RESUMEN

The prion-like protein Shadoo has been suggested to compensate for the lack of PrP in Prnp-knockout mice, explaining their lack of extreme phenotype. In adult mice, both PrP and Shadoo have shown overlapping expression patterns and shared functions. Their expression in the mouse embryo has also been suggested to be complementary, as invalidation of both genes results in embryonic lethality. The developmental expression profile of PrP has been described from post-implantation stages up until birth. However the spatial expression pattern of Shadoo in the developing mouse embryo is not known. We previously described the expression profile of the prion-like protein Shadoo in adult mice using Sprn reporter mice (Sprn-GFP and Sprn-LacZ). Here we used these mice to describe the developmental expression of Shadoo between 10.5 and 14.5 dpc. The observed pattern in specific embryonic cell lineages and in extra-embryonic tissues is consistent with the previously reported phenotype resulting from its knockdown.


Asunto(s)
Embrión de Mamíferos/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Animales , Linaje de la Célula , Embrión de Mamíferos/citología , Proteínas Ligadas a GPI , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Priónicas , Priones/biosíntesis , Priones/genética , Transgenes , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
20.
Front Cell Dev Biol ; 9: 700290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277642

RESUMEN

Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1 -/- testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik -/- testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA