Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 6(2): e03394, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32072068

RESUMEN

Several studies have been conducted worldwide to develop effective and affordable methods to degrade pharmaceuticals and their metabolites/intermediates/oxidation products found in surface water, wastewater and drinking water. In this work, acetaminophen and its transformation products were successfully degraded in surface water by electrochemical oxidation using stainless steel electrodes. The effect of pH and current density on the oxidation process was assessed and the oxidation kinetics and mechanisms involved were described. Additionally, the results were compared with those obtained in acetaminophen synthetic solutions. It was found that conducting the electrochemical oxidation at 16.3 mA/cm2 and pH 5, good performance of the process was achieved and not only acetaminophen, but also its transformation products were totally degraded in only 7.5 min; furthermore, small number of transformation products were generated. On the other hand, degradation rates of acetaminophen and its transformation products in surface water were much faster (more than 2.5 times) and the reaction times much shorter (more than 4.0 times) than in synthetic solutions at all current densities and pH values evaluated. At pH 3 and pH 5, greater soluble chlorine formation due to the higher HCl amount used to acidify the surface water solutions could enhance the degradation rates of acetaminophen and its transformation products. However, constituents of surface water (ions and solids) could also have an important role on the oxidation process because at pH 9 (non-acidified solutions) the degradation rates were also much greater and the reaction times were much shorter in surface water than in acetaminophen synthetic solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA