Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279215

RESUMEN

The aim of this work was to evaluate possible mechanisms involved in the protective effect of N-acetyl-L-cysteine (NAC) on hepatic endocrine-metabolic, oxidative stress, and inflammatory changes in prediabetic rats. For that, normal male Wistar rats (60 days old) were fed for 21 days with 10% sucrose in their drinking water and 5 days of NAC administration (50 mg/kg, i.p.) and thereafter, we determined: serum glucose, insulin, transaminases, uric acid, and triglyceride levels; hepatic fructokinase and glucokinase activities, glycogen content, lipogenic gene expression; enzymatic and non-enzymatic oxidative stress, insulin signaling pathway, and inflammatory markers. Results showed that alterations evinced in sucrose-fed rats (hypertriglyceridemia, hyperinsulinemia, and high liver fructokinase activity together with increased liver lipogenic gene expression and oxidative stress and inflammatory markers) were prevented by NAC administration. P-endothelial nitric oxide synthase (P-eNOS)/eNOS and pAKT/AKT ratios, decreased by sucrose ingestion, were restored after NAC treatment. In conclusion, the results suggest that NAC administration improves glucose homeostasis, oxidative stress, and inflammation in prediabetic rats probably mediated by modulation of the AKT/NOS pathway. Administration of NAC may be an effective complementary strategy to alleviate or prevent oxidative stress and inflammatory responses observed in type 2 diabetes at early stages of its development (prediabetes).


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Ratas , Masculino , Animales , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Estado Prediabético/tratamiento farmacológico , Ratas Wistar , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sacarosa/farmacología , Estrés Oxidativo , Insulina/metabolismo , Transducción de Señal , Glucosa/farmacología , Óxido Nítrico/metabolismo
2.
Environ Monit Assess ; 195(12): 1551, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030801

RESUMEN

Maritime transport is considered a sustainable mean of transporting goods worldwide. In addition to cargo, ships unintentionally transport non-native species. While managing the transport of organisms through ballast water has been at the centre of international efforts, biofouling from ships has not been addressed in the same way and some potentially harmful practices, such as in-water cleaning, still occur worldwide. Another problem arising from ship operating standards is the equipment known as "open-loop scrubbers," which utilizes seawater to "wash" the sulfur content out of the heavy fuel oil (HFO) and, in turn, discharges an acidic wash water full of sulfur and other substances from fuel oils in the environment. Here, we compare the international regulations applied to both issues and how they have been implemented in Brazil so far, considering the perspective of ports and terminals. Results showed that six of sixteen states have already imposed restrictions/bans on scrubbers wash waters, indicating a clear movement in the direction of restricting the discharge as the best way to prevent air and marine pollution. Regarding biofouling, although there is hope with the adoption of the revised guidelines, there are still some doubts considering these are non-binding, depending on national policies to be implemented. In Brazil, there is no national policy yet, and all public ports prohibit vessels in-water cleaning.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Agua , Brasil , Monitoreo del Ambiente , Navíos , Azufre
3.
An Acad Bras Cienc ; 94(suppl 2): e20210309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35730894

RESUMEN

The oil spill of unknown origin that hit the Brazilian coast in 2019 led to the first activation of the National Contingency Plan, outside the scope of an exercise. The Brazilian Navy, the Environmental Agency and the Oil Agency worked together during the oil spill emergency at the Federal level, as the plan´s Monitoring and Evaluation Group. However, the distinctive characteristics and proportions of the incident demanded unanticipated actions. Therefore, this work aims to analyze the response actions, to evaluate policies and procedures in place and to propose improvements for the future. The paper discusses the anonymous and voluntary feedback from 150 professionals, obtained during the event, through a structured online form. The results of the survey are compared to findings in official documents, especially the Incident´s Final Report, prepared by the Brazilian Navy. The conclusion is that the Incident Command System, used to manage and coordinate clean-up operations, provided a swift and coordinated response as the oil reached the shore of 11 states. In contrast, there is a need to review the legal framework, including the Decree that established the National Contingency Plan, revisit response manuals, improve liaison and enhance communication channels among different authorities in the Brazilian Government.


Asunto(s)
Contaminación por Petróleo , Brasil
4.
Medicina (Kaunas) ; 58(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35056315

RESUMEN

Background and Objectives: The work was aimed to determine the chronological sequence of events triggered by a fructose-rich diet (FRD) (10% w/v in the drinking water) in normal rats. Material and Methods: Serum parameters, liver and islet markers of metabolism, inflammation and oxidative stress were determined weekly for 21 days. Results: At the end of the first week, rats fed with a FRD showed an early increase in circulating triglycerides, fat liver deposit, and enzymatic activity of liver glucokinase and glucose-6-phosphate dehydrogenase (G6P-DH). After two weeks of such a diet, liver glucose-6-phosphatase (G6Pase) activity and liver oxidative stress markers were significantly increased. Liver sterol regulatory element-binding protein 1c (SREBP1c) mRNA also increased in the second week while their target genes fatty acid synthase (FAS) and glycerol-3-phosphate dehydrogenase (GPAT) enhanced their expression at the third week. Liver and pancreatic inflammation markers also enhanced their gene expression in the last week of treatment. Whereas both control and FRD rats remained normoglycemic throughout the entire period of treatment, blood insulin levels were significantly higher in FRD animals at the third week, thereby evidencing an insulin-resistant state (higher HOMA-IR, HOMA-B and HIS indexes). Pancreatic islets isolated from rats fed with a FRD for 3 weeks also increased glucose-induced insulin secretion (8.3 and 16.7 mM). Conclusions: FRD induces asynchronous changes involving early hypertriglyceridemia together with intrahepatic lipid deposit and metabolic disturbances from week one, followed by enhanced liver oxidative stress, liver and pancreas inflammation, pancreatic ß-cell dysfunction, and peripheral insulin-resistance registered at the third week. Knowledge of time-course adaptation mechanisms involved in our rat model could be helpful in developing appropriate strategies to prevent the progression from prediabetes to Type 2 diabetes (T2D) triggered by unhealthy diets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Dieta , Fructosa/efectos adversos , Ratas , Ratas Wistar
5.
Artículo en Inglés | MEDLINE | ID: mdl-37429413

RESUMEN

Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.


Asunto(s)
Estado Prediabético , Fosfato de Sitagliptina , Ratones , Ratas , Humanos , Animales , Exenatida/farmacología , Fructosa/efectos adversos , Receptor del Péptido 1 Similar al Glucagón , Modelos Animales de Enfermedad , Factores de Transcripción , Triglicéridos/metabolismo
6.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256882

RESUMEN

A high-fructose diet (HFD) induces murine alterations like those recorded in human prediabetes. Protective effects of isoespintanol (monoterpene isolated from Oxandra cf. xylopioides) on changes induced by HFD were evaluated. Animals were maintained for 21 days with a standard diet (C), 10% fructose (F), and F plus isoespintanol (FI, 10 mg/kg, i.p.). Glycemia, triglyceridemia, total and HDL-cholesterol, and insulin resistance index (IRX) were determined. Intraperitoneal glucose tolerance test (IGTT) was performed. In the liver, we measured glycogen, lipogenic gene expression (SREBP-1c, GPAT, FAS, and CPT1), oxidative stress (GSH and 3'-nitrotyrosine content), inflammation markers (iNOS, TNF-α, and PAI-1 gene expression; iNOS and COX-2 protein levels), p-eNOS, p-Akt, and p-GSK3ß protein levels. Isoespintanol corrected enhanced triglycerides, lipogenic genes, and IRX, and reduced HDL-cholesterol induced by HFD. Increased liver glycogen and inflammatory markers and decreased GSH, p-Akt, and p-GSK3ß measured in F rats were reversed by isoespintanol, and p-eNOS/e-NOS and iNOS/GADPH ratios were normalized. Isoespintanol restored glucose tolerance (IGTT) compared to F rats. These results demonstrate for the first time that isoespintanol prevents endocrine-metabolic alterations induced by HFD in prediabetic rats. These effects could be mediated by Akt/eNOS and Akt/GSK3ß pathways, suggesting its possible use as a therapeutic tool for the prevention of diabetes at early stages of its development (prediabetes).

7.
Plants (Basel) ; 12(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514235

RESUMEN

"Yerba mate" (YM), an aqueous extract of Ilex paraguariensis, has antioxidant, diuretic, cardio-protective and hypoglycaemic properties. Since its effect on the pancreatic islets remains unclear, we evaluated insulin sensitivity and glucose-stimulated insulin secretion (GSIS) in rats consuming YM or tap water (C) for 21 days. Glucose tolerance, glycemia, triglyceridemia, insulinemia, TBARS and FRAP serum levels were evaluated. GSIS and mRNA levels of insulin signaling pathway and inflammatory markers were measured in isolated pancreatic islets from both groups. In C rats, islets were incubated with YM extract or its phenolic components to measure GSIS. YM improved glucose tolerance, enhanced GSIS, increased FRAP plasma levels and islet mRNA levels of IRS-1 and PI3K (p110), and decreased TBARS plasma levels and islet gene expression of TNF-α and PAI-1. Islets from C rats incubated with 100 µg/mL dry YM extract, 1 µM chlorogenic acid, 0.1 and 1 µM rutin, 1 µM caffeic acid or 1 µM quercetin showed an increase in GSIS. Our results suggest that YM enhances glucose tolerance because of its positive effects on GSIS, oxidative stress rate and insulin sensitivity in rat islets, suggesting that long-term dietary supplementation with YM may improve glucose homeostasis in pre-diabetes or type 2 diabetes.

8.
Clin Sci (Lond) ; 123(12): 681-92, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22738259

RESUMEN

In the present study, we investigated the role of NADPH oxidase in F (fructose)-rich-diet-induced hepatic OS (oxidative stress) and metabolic changes, and their prevention by apocynin co-administration. Wistar rats were fed for 21 days on (i) a control diet, (ii) a control diet plus 10% F in the drinking water, (iii) a control diet with apocynin in the drinking water (CA) and (iv) F plus apocynin in the drinking water (FA). Glycaemia, triglyceridaemia, NEFAs (non-esterified fatty acids) and insulinaemia were determined. In the liver, we measured (i) NADPH oxidase activity, and gene and protein expression; (ii) protein carbonyl groups, GSH and TBARSs (thiobarbituric acid-reactive substances); (iii) catalase, CuZn-SOD (superoxide dismutase) and Mn-SOD expression; (iv) liver glycogen and lipid content; (v) GK (glucokinase), G6Pase (glucose-6-phosphatase) and G6PDH (glucose-6-phosphate dehydrogenase) activities; (vi) FAS (fatty acid synthase), GPAT (glycerol-3-phosphate acyltransferase), G6Pase and G6PDH, IL-1ß (interleukin-1ß), PAI-1 (plasminogen-activator inhibitor-1) and TNFα (tumour necrosis factor α) gene expression; and (vii) IκBα (inhibitor of nuclear factor κB α) protein expression. F-fed animals had high serum TAG (triacylglycerol), NEFA and insulin levels, high liver NADPH oxidase activity/expression, increased OS markers, reduced antioxidant enzyme expression, and increased glycogen, TAG storage and GK, G6Pase and G6PDH activities. They also had high G6Pase, G6PDH, FAS, GPAT, TNFα and IL-1ß gene expression and decreased IκBα expression. Co-administration of apocynin to F-fed rats prevented the development of most of these abnormalities. In conclusion, NADPH oxidase plays a key role in F-induced hepatic OS production and probably also in the mechanism of liver steatosis, suggesting its potential usefulness for the prevention/treatment of T2DM (Type 2 diabetes mellitus).


Asunto(s)
Acetofenonas/farmacología , Fructosa/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Acetofenonas/administración & dosificación , Administración Oral , Análisis de Varianza , Animales , Glucemia/metabolismo , Western Blotting , Catalasa/metabolismo , Cartilla de ADN/genética , Ácidos Grasos no Esterificados/sangre , Fructosa/administración & dosificación , Glutatión/metabolismo , Insulina/sangre , Hígado/enzimología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Triglicéridos/sangre
9.
J Ethnopharmacol ; 247: 112263, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31580944

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cocoa extracts rich in polyphenols are used as potential agent for treating diabetes. Cocoa polyphenols have been proved to ameliorate important hallmarks of type-2 diabetes (T2D). They can regulate glucose levels by increasing insulin secretion, promoting ß-cell proliferation and a reduction of insulin resistance. In addition, epidemiological evidence indicates that consumption of flavonoid decreases the incidence of T2D. AIM OF THE STUDY: T2D is preceded by a prediabetic state in which the endocrine-metabolic changes described in T2D are already present. Since epidemiological evidence indicates that consumption of flavonoid decreases its incidence, we evaluated possible preventive effects of polyphenol-enriched cocoa extract on a model of prediabetes induced by sucrose. MATERIALS AND METHODS: We determined circulating parameters and insulin sensitivity indexes, liver protein carbonyl groups and reduced glutathione, liver mRNA expression levels of lipogenic enzymes, expression of different pro-inflammatory mediators, fructokinase activity and liver glycogen content. For that, radioimmunoassay, real-time polymerase chain reaction, Western blot, spectrophotometry, and immunohistochemistry were used. RESULTS: We demonstrated that sucrose administration triggered hypertriglyceridemia, insulin-resistance, and liver increased oxidative stress and inflammation markers compared to control rats. Additionally, we found an increase in glycogen deposit, fructokinase activity, and lipogenic genes expression (SREBP-1c, FAS and GPAT) together with a decrease in P-Akt and P-eNOS protein content (P < 0.05). Sucrose-induced insulin resistance, hepatic carbohydrate and lipid dysmetabolism, oxidative stress, and inflammation were effectively disrupted by polyphenol-enriched cocoa extract (PECE) co-administration (P < 0.05). CONCLUSION: Dietary administration of cocoa flavanols may be an effective and complementary tool for preventing or reverting T2D at an early stage of its development (prediabetes).


Asunto(s)
Cacao/química , Diabetes Mellitus Tipo 2/prevención & control , Extractos Vegetales/farmacología , Polifenoles/farmacología , Estado Prediabético/tratamiento farmacológico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Sacarosa en la Dieta/efectos adversos , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Polifenoles/aislamiento & purificación , Polifenoles/uso terapéutico , Estado Prediabético/sangre , Estado Prediabético/etiología , Estado Prediabético/metabolismo , Ratas , Triglicéridos/sangre , Triglicéridos/metabolismo
10.
Environ Technol ; 40(11): 1455-1466, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29308732

RESUMEN

In the Wadden Sea, the Netherlands, and at L4 in the English Channel, UK, the size class distribution of phytoplankton was investigated with respect to the size range >10-≤50 µm identified by the IMO Ballast Water Convention. Size fractionation using 10 µm mesh filtration showed considerable size bias; 23.1% of >10 µm cells were still present in the <10 µm, but 21.8% of the smaller size cells were also retained on the mesh, resulting in an overestimated number of cells/mL by as much as a factor of 5.4. Flowcytometry measurements indicated that the phytoplankton in the size range 2-50  µm was dominated by the smaller size (<10 µm) at both sites. For the >10-≤50 µm size, these were on average 3.6% and 2% in the Wadden Sea and at L4, respectively. In terms of chlorophyll biomass, they represented 28.7% and 12%, respectively. The filtration method resulted in much higher chlorophyll values for 10-50  µm size range: 53.7% in the Wadden Sea and 38% at L4. This overestimation appears to be caused by cells in 6-10  µm size range being retained on the mesh. These findings are relevant in the context of the size class distribution based on flowcytometry and semi-quantification using chlorophyll as proxy for cell density.


Asunto(s)
Fitoplancton , Agua , Biomasa , Clorofila , Agua de Mar
11.
Food Funct ; 10(1): 16-25, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30575838

RESUMEN

In recent decades a worldwide increase has been reported in the consumption of unhealthy high calorie diets associated with marked changes in meal nutrient composition, such as a higher intake of refined carbohydrates, which leads to the speculatation that changes in food habits have contributed to the current epidemic of obesity and type 2 diabetes. Among these refined carbohydrates, fructose has been deeply investigated and murine models of high fructose diet have emerged as useful tools to study dietary-induced insulin resistance, impaired glucose tolerance, dyslipidemia and alterations in glucose metabolism. Since oxidative stress has been demonstrated to play a key pathogenic role in the alterations described above, several lines of research have focused on the possible preventive effects of antioxidant/redox state regulation therapy, among which alpha-lipoic acid has been extensively investigated. The following references discussed support the fact that co-administration of alpha-lipoic acid normalized the changes generated by fructose rich diets, thereby making this compound a good therapeutic tool, also administered as a food supplement, to prevent endocrine-metabolic disturbances triggered by high fructose associated with obesity and type 2 diabetes at an early stage of development (prediabetes).


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Sistema Endocrino/metabolismo , Fructosa/efectos adversos , Obesidad/prevención & control , Ácido Tióctico/administración & dosificación , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Sistema Endocrino/efectos de los fármacos , Humanos , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos
13.
Mar Pollut Bull ; 137: 172-179, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30503423

RESUMEN

Shipping is recognised as an unintentional efficient pathway for spreading non-native species, harmful organisms and pathogens. In 2004, a unique IMO Convention was adopted to control and minimize this transfer in ship's ballast water. This Convention entered into force on 8th September 2017. However, unlikely the majority of IMO Conventions, the Ballast Water Management Convention requires ships to comply with biological standards (e.g. concentration of organisms per unit of volume in ballast water discharges). This study aimed to apply different techniques developed to measure concentrations of viable phytoplankton in natural and treated ballast water samples and compare them with the established flow cytometry method and vital staining microscopy. Samples were collected in the English Channel over one year and on-board during ballast water shipboard efficacy tests. Natural abundance of live phytoplankton varied from 23% to 89% of the total, while for cells larger than 10 µm (a size defined by the BWM Convention) the percentage varied from 3% to 60%. An overall good correlation was seen between the measurements taken with the two fluorometers and in comparison with the flow cytometry analysis, as found in previous studies. Analysis of treated ballast water samples showed a large variation in the number of viable cells, however indicating a low level of risk on all occasions for regulatory purposes. One of the key aspects to bear in mind when sampling and analysing for compliance is to be aware of the limitations of each technique.


Asunto(s)
Bioensayo/métodos , Fitoplancton/efectos de los fármacos , Fitoplancton/crecimiento & desarrollo , Contaminantes del Agua/farmacología , Aguas del Alcantarillado/química , Navíos/instrumentación , Eliminación de Residuos Líquidos , Contaminantes del Agua/análisis , Purificación del Agua/métodos
15.
Life Sci ; 199: 88-95, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29522769

RESUMEN

AIM: Hypothalamic obese rats are characterized by pre-diabetes, dyslipidemia, hyperadiposity, inflammation and, liver dysmetabolism with oxidative stress (OS), among others. We studied endocrine-metabolic dysfunctions and, liver OS and inflammation in both monosodium l-glutamate (MSG)-neonatally damaged and control litter-mate (C) adult male rats, either chronically treated with N-Acetyl-l-Cysteine since weaned (C-NAC and MSG-NAC) or not. METHODOLOGY: We evaluated circulating TBARS, glucose, insulin, triglycerides, uric acid (UA) and, aspartate and alanine amino-transferase; insulin sensitivity markers (HOMA indexes, Liver Index of Insulin Sensitivity -LISI-) were calculated and liver steps of the insulin-signaling pathway were investigated. Additionally, we monitored liver OS (protein carbonyl groups, GSH and iNOS level) and inflammation-related markers (COX-2 and TNFα protein content; gene expression level of Il1b, Tnfα and Pai-1); and carbohydrate and lipid metabolic functions (glucokinase/fructokinase activities and, mRNA levels of Srebp1c, Fas and Gpat). KEY FINDINGS: Chronic NAC treatment in MSG rats efficiently decreased the high circulating levels of triglycerides, UA, transaminases and TBARS, as well as peripheral (high insulinemia and HOMA indexes) and liver (LISI and the P-AKT:AKT and P-eNOS:eNOS protein ratio values) insulin-resistance. Moreover, NAC therapy in MSG rats prevented liver dysmetabolism by decreasing local levels of OS and inflammation markers. Finally, NAC-treated MSG rats retained normal liver glucokinase and fructokinase activities, and Srebp1c, Fas and Gpat (lipogenic genes) expression levels. SIGNIFICANCE: Our study strongly supports that chronic oral antioxidant therapy (NAC administration) prevented the development of pre-diabetes, dyslipidemia, and inflamed-dysmetabolic liver in hypothalamic obese rats by efficiently decreasing high endogenous OS.


Asunto(s)
Acetilcisteína/uso terapéutico , Hipotálamo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Obesidad/tratamiento farmacológico , Estado Prediabético/prevención & control , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Hipotálamo/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Obesidad/sangre , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Estado Prediabético/sangre , Ratas , Ratas Wistar , Resultado del Tratamiento
16.
Peptides ; 101: 44-50, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29305881

RESUMEN

Islet-Neogenesis Associated Protein-Pentadecapeptide (INGAP-PP) increases ß-cell mass and enhances glucose and amino acids-induced insulin secretion. Our aim was to demonstrate its effect on liver metabolism. For that purpose, adult male Wistar rats were injected twice-daily (10 days) with saline solution or INGAP-PP (250 µg). Thereafter, serum glucose, triglyceride and insulin levels were measured and homeostasis model assessment (HOMA-IR) and hepatic insulin sensitivity (HIS) were determined. Liver glucokinase and glucose-6-phosphatase (G-6-Pase) expression and activity, phosphoenolpyruvate carboxykinase (PEPCK) expression, phosphofructokinase-2 (PFK-2) protein content, P-Akt/Akt and glycogen synthase kinase-3ß (P-GSK3/GSK3) protein ratios and glycogen deposit were also determined. Additionally, glucokinase activity and G-6-Pase and PEPCK gene expression were also determined in isolated hepatocytes from normal rats incubated with INGAP-PP (5 µg/ml). INGAP-PP administration did not modify any of the serum parameters tested but significantly increased activity of liver glucokinase and the protein level of its cytosolic activator, PFK-2. Conversely, INGAP-PP treated rats decreased gene expression and enzyme activity of gluconeogenic enzymes, G-6-Pase and PEPCK. They also showed a higher glycogen deposit and P-GSK3/GSK3 and P-Akt/Akt ratio. In isolated hepatocytes, INGAP-PP increased GK activity and decreased G-6-Pase and PEPCK expression. These results demonstrate a direct effect of INGAP-PP on the liver acting through P-Akt signaling pathway. INGAP-PP enhances liver glucose metabolism and deposit and reduces its production/output, thereby contributing to maintain normal glucose homeostasis. These results reinforce the concept that INGAP-PP might become a useful tool to treat people with impaired islet/liver glucose metabolism as it occurs in T2D.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Hígado/metabolismo , Oligopéptidos/farmacología , Proteínas Asociadas a Pancreatitis/química , Transducción de Señal/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Oligopéptidos/química , Ratas , Ratas Wistar
17.
Mar Pollut Bull ; 116(1-2): 41-47, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28126398

RESUMEN

The spread of non-native species has been a subject of increasing concern since the 1980s when human-mediated transportation, mainly related to ships' ballast water, was recognized as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions. There are reports of 44 species associated with high impacts for the NE Atlantic and 15 for the SW Atlantic, although this may be an underestimate. Vectors most cited are ballast water and biofouling for both regions while aquaculture has also been a very significant pathway of introduction and spread of invasive species in the NE Atlantic. Although the two regions have significant shipping traffic, no exchange of invasive species could be directly associated to the shipping between the two regions. However, it seems prudent to bring the exchange of ballast water between the two regions under control as soon as possible.


Asunto(s)
Especies Introducidas , Navíos , Animales , Océano Atlántico
18.
Int J Cardiol ; 202: 394-406, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432489

RESUMEN

BACKGROUND: Heart failure and arrhythmias occur more frequently in patients with type 2 diabetes (T2DM) than in the general population. T2DM is preceded by a prediabetic condition marked by elevated reactive oxygen species (ROS) and subclinical cardiovascular defects. Although multifunctional Ca2+ calmodulin-dependent protein kinase II (CaMKII) is ROS-activated and CaMKII hyperactivity promotes cardiac diseases, a link between prediabetes and CaMKII in the heart is unprecedented. OBJECTIVES: To prove the hypothesis that increased ROS and CaMKII activity contribute to heart failure and arrhythmogenic mechanisms in early stage diabetes. METHODS-RESULTS: Echocardiography, electrocardiography, biochemical and intracellular Ca2+ (Ca2+i) determinations were performed in fructose-rich diet-induced impaired glucose tolerance, a prediabetes model, in rodents. Fructose-rich diet rats showed decreased contractility and hypertrophy associated with increased CaMKII activity, ROS production, oxidized CaMKII and enhanced CaMKII-dependent ryanodine receptor (RyR2) phosphorylation compared to rats fed with control diet. Isolated cardiomyocytes from fructose-rich diet showed increased spontaneous Ca2+i release events associated with spontaneous contractions, which were prevented by KN-93, a CaMKII inhibitor, or addition of Tempol, a ROS scavenger, to the diet. Moreover, fructose-rich diet myocytes showed increased diastolic Ca2+ during the burst of spontaneous Ca2+i release events. Mice treated with Tempol or with sarcoplasmic reticulum-targeted CaMKII-inhibition by transgenic expression of the CaMKII inhibitory peptide AIP, were protected from fructose-rich diet-induced spontaneous Ca2+i release events, spontaneous contractions and arrhythmogenesis in vivo, despite ROS increases. CONCLUSIONS: RyR2 phosphorylation by ROS-activated CaMKII, contributes to impaired glucose tolerance-induced arrhythmogenic mechanisms, suggesting that CaMKII inhibition could prevent prediabetic cardiovascular complications and/or evolution.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Aminoácidos/metabolismo , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/prevención & control , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Cromo/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Fructosa/administración & dosificación , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Ácidos Nicotínicos/metabolismo , Fosforilación , Estado Prediabético/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacología
19.
Int J Endocrinol ; 2016: 7838290, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597864

RESUMEN

We investigated the impact of chronic hypercorticosteronemia (due to neonatal monosodium L-glutamate, MSG, and treatment) on liver oxidative stress (OS), inflammation, and carbohydrate/lipid metabolism in adult male rats. We evaluated the peripheral concentrations of several metabolic and OS markers and insulin resistance indexes. In liver we assessed (a) OS (GSH and protein carbonyl groups) and inflammatory (IL-1b, TNFa, and PAI-1) biomarkers and (b) carbohydrate and lipid metabolisms. MSG rats displayed degenerated optic nerves, hypophagia, low body and liver weights, and enlarged adipose tissue mass; higher peripheral levels of glucose, triglycerides, insulin, uric acid, leptin, corticosterone, transaminases and TBARS, and peripheral and liver insulin resistance; elevated liver OS, inflammation markers, and glucokinase (mRNA/activity) and fructokinase (mRNA). Additionally, MSG liver phosphofructokinase-2, glucose-6-phosphatase (mRNA and activity) and glucose-6-phosphate dehydrogenase, Chrebp, Srebp1c, fatty acid synthase, and glycerol-3-phosphate (mRNAs) were increased. In conclusion adult MSG rats developed an insulin-resistant state and increased OS and serious hepatic dysfunction characterized by inflammation and metabolic signs suggesting increased lipogenesis. These features, shared by both metabolic and Cushing's syndrome human phenotypes, support that a chronic glucocorticoid-rich endogenous environment mainly impacts on hepatic glucose cycle, displacing local metabolism to lipogenesis. Whether correcting the glucocorticoid-rich environment ameliorates such dysfunctions requires further investigation.

20.
Life Sci ; 137: 1-6, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188590

RESUMEN

AIMS: Fructose administration induces hepatic oxidative stress, insulin resistance, inflammatory and metabolic changes. We tested their potential pathogenic relationship and whether these alterations can be prevented by R/S-α-lipoic acid. MAIN METHODS: Wistar rats received during 21days a commercial diet or the same diet supplemented with 10% fructose in drinking water without/with R/S-α-lipoic acid injection. After this period, we measured a) serum glucose, triglyceride, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), insulin glucose ratio (IGR) and Matsuda indexes and b) liver oxidative stress, inflammatory markers and insulin signaling pathway components. KEY FINDINGS: Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR, IGR and lower Matsuda indices compared to control animals, together with increased oxidative stress markers, TNFα, IL1ß and PAI-1 gene expression, and TNFα and COX-2 protein content. Whereas insulin receptor level was higher in fructose fed rats, their tyrosine-residue phosphorylation was lower. IRS1/IRS2 protein levels and IRS1 tyrosine-phosphorylation rate were lower in fructose fed rats. All changes were prevented by R/S-α-lipoic acid co-administration. SIGNIFICANCE: Fructose-induced hepatic oxidative stress, insulin resistance and inflammation form a triad that constitutes a vicious pathogenic circle. This circle can be effectively disrupted by R/S-α-lipoic acid co-administration, thus suggesting mutual positive interaction among the triad components.


Asunto(s)
Fructosa/efectos adversos , Inflamación/dietoterapia , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucemia/metabolismo , Ciclooxigenasa 2/biosíntesis , Suplementos Dietéticos , Expresión Génica/efectos de los fármacos , Inflamación/sangre , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Interleucina-1beta/biosíntesis , Hígado/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/biosíntesis , Ratas , Ratas Wistar , Receptor de Insulina/biosíntesis , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA