Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 60(15): C1-C7, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143099

RESUMEN

10 kHz two-color OH planar laser-induced fluorescence (PLIF) thermometry was demonstrated in both laminar Hencken flames and turbulent premixed jet flames using two injection-seeded optical parametric oscillators (OPOs) pumped by a high-speed three-legged burst-mode laser. The two burst-mode OPOs generate ∼5mJ/pulse at 282 nm and 286 nm to excite the Q1(5) and Q1(14) transitions of the A2Σ+←X2Π (1,0) system of OH, respectively. PLIF images were collected simultaneously from each of the two transitions and ratios of intensities from the two images were used to determine local temperatures. Analyses of flame curvature, temperature, and the correlation in time of these two quantities are also discussed. The results from this work are promising for the use of this technique in more complex flow environments and at, potentially, even higher repetition rate.

2.
Appl Opt ; 55(23): 6256-62, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27534467

RESUMEN

A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.

3.
Opt Express ; 21(1): 1152-62, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23389008

RESUMEN

This paper describes a novel laser diagnostic and its demonstration in a practical aero-propulsion engine (General Electric J85). The diagnostic technique, named hyperspectral tomography (HT), enables simultaneous 2-dimensional (2D) imaging of temperature and water-vapor concentration at 225 spatial grid points with a temporal response up to 50 kHz. To our knowledge, this is the first time that such sensing capabilities have been reported. This paper introduces the principles of the HT techniques, reports its operation and application in a J85 engine, and discusses its perspective for the study of high-speed reactive flows.

4.
Appl Opt ; 52(12): 2893-904, 2013 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-23669701

RESUMEN

Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

5.
Appl Opt ; 49(26): 4963-72, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20830185

RESUMEN

Two time-division-multiplexed (TDM) sources based on fiber Bragg gratings were applied to monitor gas temperature, H(2)O mole fraction, and CH(4) mole fraction using line-of-sight absorption spectroscopy in a practical high-pressure gas turbine combustor test article. Collectively, the two sources cycle through 14 wavelengths in the 1329-1667 nm range every 33 µs. Although it is based on absorption spectroscopy, this sensing technology is fundamentally different from typical diode-laser-based absorption sensors and has many advantages. Specifically, the TDM lasers allow efficient, flexible acquisition of discrete-wavelength information over a wide spectral range at very high speeds (typically 30 kHz) and thereby provide a multiplicity of precise data at high speeds. For the present gas turbine application, the TDM source wavelengths were chosen using simulated temperature-difference spectra. This approach is used to select TDM wavelengths that are near the optimum values for precise temperature and species-concentration measurements. The application of TDM lasers for other measurements in high-pressure, turbulent reacting flows and for two-dimensional tomographic reconstruction of the temperature and species-concentration fields is also forecast.

6.
Opt Express ; 17(10): 8602-13, 2009 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-19434193

RESUMEN

A novel technique has been developed to obtain simultaneous tomographic images of temperature and species concentration based on hyperspectral absorption spectroscopy. The hyperspectral information enables several key advantages when compared to traditional tomography techniques based on limited spectral information. These advantages include a significant reduction in the number of required projection measurements, and an enhanced insensitivity to measurements/inversion uncertainties. These advantages greatly facilitate the practical implementation and application of the tomography technique. This paper reports the development of the technique, and the experimental demonstration of a prototype sensor in a near-adiabatic, atmospheric-pressure laboratory Hencken burner. The spatial and temporal resolution enabled by this new sensing technique is expected to resolve several key issues in practical combustion devices.

7.
Opt Express ; 15(23): 15115-28, 2007 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19550795

RESUMEN

We present a novel method for low noise, high-speed, real-time spectroscopy to monitor molecular absorption spectra. The system is based on a rapidly swept, narrowband CW Fourier-domain mode-locked (FDML) laser source for spectral encoding in time and an optically time-multiplexed split-pulse data acquisition system for improved noise performance and sensitivity. An acquisition speed of ~100 kHz, a spectral resolution better than 0.1 nm over a wavelength range of ~1335-1373 nm and a relative noise level of ~5 mOD (~1% minimum detectable base-e absorbance) are achieved. The system is applied for crank-angle-resolved gas thermometry by H(2)O absorption spectroscopy in an engine motoring at 600 and 900 rpm with a precision of ~1%. Influences of various noise sources such as laser phase and intensity noise, trigger and synchronization jitter in the electronic detection system, and the accuracy of available H(2)O absorption databases are discussed.

8.
Appl Spectrosc ; 69(4): 464-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25909716

RESUMEN

A differential evolution (DE) algorithm is applied to a recently developed spectroscopic objective function to select wavelengths that optimize the temperature precision of water absorption thermometry. DE reliably finds optima even when many-wavelength sets are chosen from large populations of wavelengths (here 120 000 wavelengths from a spectrum with 0.002 cm(-1) resolution calculated by 16 856 transitions). Here, we study sets of fixed wavelengths in the 7280-7520 cm(-1) range. When optimizing the thermometer for performance within a narrow temperature range, the results confirm that the best temperature precision is obtained if all the available measurement time is split judiciously between the two most temperature-sensitive wavelengths. In the wide temperature range case (thermometer must perform throughout 280-2800 K), we find (1) the best four-wavelength set outperforms the best two-wavelength set by an average factor of 2, and (2) a complete spectrum (all 120 000 wavelengths from 16 856 transitions) is 4.3 times worse than the best two-wavelength set. Key implications for sensor designers include: (1) from the perspective of spectroscopic temperature sensitivity, it is usually sufficient to monitor two or three wavelengths, depending on the sensor's anticipated operating temperature range; and (2) although there is a temperature precision penalty to monitoring a complete spectrum, that penalty may be small enough, particularly at elevated pressure, to justify the complete-spectrum approach in many applications.

9.
Appl Opt ; 46(19): 4117-24, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17571153

RESUMEN

A robust method is described for calculating temperature, mole fraction, and pressure from measured absorption spectra (absorption coefficients versus optical frequency). The key components to the method are smoothing, differentiation, spectral axis warping, and linear least-squares fitting. The method works best when spectra span a full rotational branch of the target molecule, but in principle it works for any spectral span. The examples presented assume a measured spectrum over the 7246.4-7518.8 cm(-1) range, which encompasses the R branch of the v(1)+v(3) band of H(2)O; however, the techniques should work for most measured spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA