Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Immunol ; 44(4): 1039-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24338698

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency caused by reduced or absent expression of the WAS protein (WASP). WAS patients are affected by microthrombocytopenia, recurrent infections, eczema, autoimmune diseases, and malignancies. Although immune deficiency has been proposed to play a role in tumor pathogenesis, there is little evidence on the correlation between immune cell defects and tumor susceptibility. Taking advantage of a tumor-prone model, we show that the lack of WASP induces early tumor onset because of defective immune surveillance. Consistently, the B16 melanoma model shows that tumor growth and the number of lung metastases are increased in the absence of WASP. We then investigated the in vivo contribution of Was(-/-) NK cells and DCs in controlling B16 melanoma development. We found fewer B16 metastases developed in the lungs of Was(-/-) mice that had received WT NK cells as compared with mice bearing Was(-/-) NK cells. Furthermore, we demonstrated that Was(-/-) DCs were less efficient in inducing NK-cell activation in vitro and in vivo. In summary, for the first time, we demonstrate in in vivo models that WASP deficiency affects resistance to tumor and causes impairment in the antitumor capacity of NK cells and DCs.


Asunto(s)
Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Melanoma Experimental/inmunología , Proteína del Síndrome de Wiskott-Aldrich/inmunología , Animales , Trasplante de Médula Ósea , Línea Celular Tumoral , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Células Dendríticas/metabolismo , Citometría de Flujo , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Estimación de Kaplan-Meier , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Carga Tumoral/genética , Carga Tumoral/inmunología , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Proteína del Síndrome de Wiskott-Aldrich/genética
2.
J Autoimmun ; 50: 42-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24369837

RESUMEN

Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21(low) B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of immune dysregulation concurring to the increased susceptibility to develop autoimmunity in WAS patients.


Asunto(s)
Autoinmunidad , Linfocitos B/inmunología , Susceptibilidad a Enfermedades/inmunología , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Síndrome de Wiskott-Aldrich/inmunología , Factor Activador de Células B/sangre , Factor Activador de Células B/genética , Factor Activador de Células B/inmunología , Linfocitos B/patología , Médula Ósea/inmunología , Médula Ósea/patología , Diferenciación Celular , Movimiento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/inmunología , Expresión Génica , Homeostasis/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Memoria Inmunológica , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/inmunología , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/inmunología
3.
J Allergy Clin Immunol ; 127(6): 1376-84.e5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21531013

RESUMEN

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by thrombocytopenia, eczema, infections, autoimmunity, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical donors is curative, but it is not available to all patients. We have developed a gene therapy (GT) approach for WAS by using a lentiviral vector encoding for human WAS promoter/cDNA (w1.6W) and demonstrated its preclinical efficacy and safety. OBJECTIVE: To evaluate B-cell reconstitution and correction of B-cell phenotype in GT-treated mice. METHODS: We transplanted Was(-/-) mice sublethally irradiated (700 rads) with lineage marker-depleted bone marrow wild-type cells, Was(-/-) cells untransduced or transduced with the w1.6W lentiviral vector and analyzed B-cell reconstitution in bone marrow, spleen, and peritoneum. RESULTS: Here we show that WAS protein(+) B cells were present in central and peripheral B-cell compartments from GT-treated mice and displayed the strongest selective advantage in the splenic marginal zone and peritoneal B1 cell subsets. After GT, splenic architecture was improved and B-cell functions were restored, as demonstrated by the improved antibody response to pneumococcal antigens and the reduction of serum IgG autoantibodies. CONCLUSION: WAS GT leads to improvement of B-cell functions, even in the presence of a mixed chimerism, further validating the clinical application of the w1.6W lentiviral vector.


Asunto(s)
Linfocitos B/inmunología , Terapia Genética/métodos , Síndrome de Wiskott-Aldrich/inmunología , Síndrome de Wiskott-Aldrich/terapia , Animales , Antígenos T-Independientes/administración & dosificación , Autoanticuerpos/sangre , Linfocitos B/metabolismo , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos , Humanos , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
4.
Curr Opin Immunol ; 74: 53-59, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34743069

RESUMEN

Adoptive T cell therapy (ACT) with tumor-reactive lymphocytes can overcome the immune desert of poorly immunogenic tumors and instruct tumor eradication. Several hurdles limit the efficacy of this strategy against solid tumor including, but not limited to, sub optimal T cell engraftment, tumor infiltration, poor tumor antigenicity/immunogenicity, and immunosuppressive or resistance mechanisms. Recent advances indicate that concomitant treatments can be set in place to offset such barriers. In this review, we highlight the beneficial effects of combining ACT with conventional chemo and/or radiotherapy. While originally classified as immunosuppressive, these methodologies can also promote the engraftment of ACT products, immunogenic cell death, and the reprogramming of more favorable microenvironments. Data indicates that systemic and local chemo/radiotherapy regimens promote intratumoral cytokine and chemokine upregulation, tumor antigen presentation and cross presentation, infiltration and in situ T cells reactivation. Here we review the most recent contributions supporting these notions and discuss further developments.


Asunto(s)
Neoplasias , Microambiente Tumoral , Antígenos de Neoplasias , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/metabolismo , Linfocitos T
5.
J Allergy Clin Immunol ; 125(2): 439-448.e8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20159256

RESUMEN

BACKGROUND: The Wiskott-Aldrich syndrome (WAS) is a rare genetic disease characterized by thrombocytopenia, immunodeficiency, autoimmunity, and hematologic malignancies. Secondary mutations leading to re-expression of WAS protein (WASP) are relatively frequent in patients with WAS. OBJECTIVE: The tissue distribution and function of revertant cells were investigated in a novel case of WAS gene secondary mutation. METHODS: A vast combination of approaches was used to characterize the second-site mutation, to investigate revertant cell function, and to track their distribution over a 18-year clinical follow-up. RESULTS: The WAS gene secondary mutation was a 4-nucleotide insertion, 4 nucleotides downstream of the original deletion. This somatic mutation allowed the T-cell-restricted expression of a stable, full-length WASP with a 3-amino acid change compared with the wild-type protein. WASP(+) T cells appeared early in the spleen (age 10 years) and were highly enriched in a mesenteric lymph node at a later time (age 23 years). Revertant T cells had a diversified T-cell-receptor repertoire and displayed in vitro and in vivo selective advantage. They proliferated and produced cytokines normally on T-cell-receptor stimulation. Consistently, the revertant WASP correctly localized to the immunologic synapse and to the leading edge of migrating T cells. CONCLUSION: Despite the high proportion of functional revertant T cells, the patient still has severe infections and autoimmune disorders, suggesting that re-expression of WASP in T cells is not sufficient to normalize immune functions fully in patients with WAS.


Asunto(s)
Tejido Linfoide/inmunología , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/inmunología , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Separación Celular , Análisis Mutacional de ADN , Citometría de Flujo , Humanos , Tejido Linfoide/citología , Masculino , Microscopía Confocal , Datos de Secuencia Molecular , Mosaicismo , Mutación , Reacción en Cadena de la Polimerasa
6.
Nat Commun ; 11(1): 6372, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311516

RESUMEN

The thymus is a primary lymphoid organ, essential for T cell maturation and selection. There has been long-standing interest in processes underpinning thymus generation and the potential to manipulate it clinically, because alterations of thymus development or function can result in severe immunodeficiency and autoimmunity. Here, we identify epithelial-mesenchymal hybrid cells, capable of long-term expansion in vitro, and able to reconstitute an anatomic phenocopy of the native thymus, when combined with thymic interstitial cells and a natural decellularised extracellular matrix (ECM) obtained by whole thymus perfusion. This anatomical human thymus reconstruction is functional, as judged by its capacity to support mature T cell development in vivo after transplantation into humanised immunodeficient mice. These findings establish a basis for dissecting the cellular and molecular crosstalk between stroma, ECM and thymocytes, and offer practical prospects for treating congenital and acquired immunological diseases.


Asunto(s)
Células del Estroma , Timo/inmunología , Animales , Autoinmunidad , Diferenciación Celular , Células Epiteliales/inmunología , Matriz Extracelular , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Ratas , Regeneración , Timocitos , Timo/patología , Timo/trasplante , Andamios del Tejido
7.
Stem Cells Transl Med ; 8(10): 1107-1122, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31140762

RESUMEN

Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.


Asunto(s)
Células Epiteliales/metabolismo , Timo/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Epiteliales/citología , Ratones , Ratones Desnudos , Regeneración
8.
J Exp Med ; 210(2): 355-74, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23337808

RESUMEN

Mutations in Wiskott-Aldrich syndrome (WAS) protein (WASp), a regulator of actin dynamics in hematopoietic cells, cause WAS, an X-linked primary immunodeficiency characterized by recurrent infections and a marked predisposition to develop autoimmune disorders. The mechanisms that link actin alterations to the autoimmune phenotype are still poorly understood. We show that chronic activation of plasmacytoid dendritic cells (pDCs) and elevated type-I interferon (IFN) levels play a role in WAS autoimmunity. WAS patients display increased expression of type-I IFN genes and their inducible targets, alteration in pDCs numbers, and hyperresponsiveness to TLR9. Importantly, ablating IFN-I signaling in WASp null mice rescued chronic activation of conventional DCs, splenomegaly, and colitis. Using WASp-deficient mice, we demonstrated that WASp null pDCs are intrinsically more responsive to multimeric agonist of TLR9 and constitutively secrete type-I IFN but become progressively tolerant to further stimulation. By acute silencing of WASp and actin inhibitors, we show that WASp-mediated actin polymerization controls intracellular trafficking and compartmentalization of TLR9 ligands in pDCs restraining exaggerated activation of the TLR9-IFN-α pathway. Together, these data highlight the role of actin dynamics in pDC innate functions and imply the pDC-IFN-α axis as a player in the onset of autoimmune phenomena in WAS disease.


Asunto(s)
Actinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interferón Tipo I/biosíntesis , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/antagonistas & inhibidores , Animales , Autoinmunidad , Secuencia de Bases , Células Dendríticas/patología , Modelos Animales de Enfermedad , Endocitosis , Femenino , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón-alfa/biosíntesis , Interferón-alfa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Transducción de Señal , Receptor Toll-Like 9/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/inmunología , Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Proteína del Síndrome de Wiskott-Aldrich/genética
9.
Front Immunol ; 3: 209, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22826711

RESUMEN

Wiskott-Aldrich Syndrome (WAS) is a severe X-linked Primary Immunodeficiency that affects 1-10 out of 1 million male individuals. WAS is caused by mutations in the WAS Protein (WASP) expressing gene that leads to the absent or reduced expression of the protein. WASP is a cytoplasmic protein that regulates the formation of actin filaments in hematopoietic cells. WASP deficiency causes many immune cell defects both in humans and in the WAS murine model, the Was(-/-) mouse. Both cellular and humoral immune defects in WAS patients contribute to the onset of severe clinical manifestations, in particular microthrombocytopenia, eczema, recurrent infections, and a high susceptibility to develop autoimmunity and malignancies. Autoimmune diseases affect from 22 to 72% of WAS patients and the most common manifestation is autoimmune hemolytic anemia, followed by vasculitis, arthritis, neutropenia, inflammatory bowel disease, and IgA nephropathy. Many groups have widely explored immune cell functionality in WAS partially explaining how cellular defects may lead to pathology. However, the mechanisms underlying the occurrence of autoimmune manifestations have not been clearly described yet. In the present review, we report the most recent progresses in the study of immune cell function in WAS that have started to unveil the mechanisms contributing to autoimmune complications in WAS patients.

10.
J Exp Med ; 206(4): 735-42, 2009 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-19307326

RESUMEN

The Wiskott-Aldrich syndrome (WAS) protein (WASp) is a regulator of actin cytoskeleton in hematopoietic cells. Mutations of the WASp gene cause WAS. Although WASp is involved in various immune cell functions, its role in invariant natural killer T (iNKT) cells has never been investigated. Defects of iNKT cells could indeed contribute to several WAS features, such as recurrent infections and high tumor incidence. We found a profound reduction of circulating iNKT cells in WAS patients, directly correlating with the severity of clinical phenotype. To better characterize iNKT cell defect in the absence of WASp, we analyzed was(-/-) mice. iNKT cell numbers were significantly reduced in the thymus and periphery of was(-/-) mice as compared with wild-type controls. Moreover analysis of was(-/-) iNKT cell maturation revealed a complete arrest at the CD44(+) NK1.1(-) intermediate stage. Notably, generation of BM chimeras demonstrated a was(-/-) iNKT cell-autonomous developmental defect. was(-/-) iNKT cells were also functionally impaired, as suggested by the reduced secretion of interleukin 4 and interferon gamma upon in vivo activation. Altogether, these results demonstrate the relevance of WASp in integrating signals critical for development and functional differentiation of iNKT cells and suggest that defects in these cells may play a role in WAS pathology.


Asunto(s)
Células T Asesinas Naturales/inmunología , Síndrome de Wiskott-Aldrich/inmunología , Animales , Citocinas/inmunología , Citometría de Flujo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Mutación , Fenotipo , Síndrome de Wiskott-Aldrich/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA