Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(16): e202319828, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358301

RESUMEN

In the search for novel, effective inhibitors of High-Mobility Group Box1 (HMGB1)-a protein involved in various inflammatory and autoimmune diseases as well as in cancer-we herein discovered a set of anti-HMGB1 G-quadruplex(G4)-forming aptamers by using an in vitro selection procedure applied to a doped library of guanine-rich oligonucleotides. The selected DNA sequences were then studied in a pseudo-physiological buffer mimicking the extracellular medium, where HMGB1 exerts its pathological activity, using spectroscopic, electrophoretic, and chromatographic techniques. All the oligonucleotides proved to fold into monomeric G4s and in some cases also dimeric species, stable at physiological temperature. Remarkably, the protein preferentially recognized the sequences forming dimeric parallel G4 structures, as evidenced by a properly designed chemiluminescent binding assay which also highlighted a good selectivity of these aptamers for HMGB1. Moreover, all aptamers showed anti-HMGB1 activity, inhibiting protein-induced cell migration. The acquired data allowed identifying L12 as the best anti-HMGB1 aptamer, featured by high thermal and enzymatic stability, no toxicity at least up to 5 µM concentration on healthy cells, along with potent anti-HMGB1 activity (IC50 ca. 28 nM) and good binding affinity for the protein, thus indicating it as a very promising lead candidate for in vivo studies.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Proteína HMGB1 , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047090

RESUMEN

Non-small-cell lung cancer (NSCLC) is the second most diagnosed type of malignancy and the first cause of cancer death worldwide. Despite recent advances, the treatment of choice for NSCLC patients remains to be chemotherapy, often showing very limited effectiveness with the frequent occurrence of drug-resistant phenotype and the lack of selectivity for tumor cells. Therefore, new effective and targeted therapeutics are needed. In this context, short RNA-based therapeutics, including Antisense Oligonucleotides (ASOs), microRNAs (miRNAs), short interfering (siRNA) and aptamers, represent a promising class of molecules. ASOs, miRNAs and siRNAs act by targeting and inhibiting specific mRNAs, thus showing an improved specificity compared to traditional anti-cancer drugs. Nucleic acid aptamers target and inhibit specific cancer-associated proteins, such as "nucleic acid antibodies". Aptamers are also able of receptor-mediated cell internalization, and therefore, they can be used as carriers of secondary agents giving the possibility of producing very highly specific and effective therapeutics. This review provides an overview of the proposed applications of small RNAs for NSCLC treatment, highlighting their advantageous features and recent advancements in the field.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , ARN Interferente Pequeño/genética , Oligonucleótidos/uso terapéutico , Oligonucleótidos Antisentido , MicroARNs/genética , ARN Mensajero , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/uso terapéutico , Aptámeros de Nucleótidos/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842557

RESUMEN

Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer worldwide, with the highest incidence in developed countries. NSCLC patients often face resistance to currently available therapies, accounting for frequent relapses and poor prognosis. Indeed, despite great recent advancements in the field of NSCLC diagnosis and multimodal therapy, most patients are diagnosed at advanced metastatic stage, with a very low overall survival. Thus, the identification of new effective diagnostic and therapeutic options for NSCLC patients is a crucial challenge in oncology. A promising class of targeting molecules is represented by nucleic-acid aptamers, short single-stranded oligonucleotides that upon folding in particular three dimensional (3D) structures, serve as high affinity ligands towards disease-associated proteins. They are produced in vitro by SELEX (systematic evolution of ligands by exponential enrichment), a combinatorial chemistry procedure, representing an important tool for novel targetable biomarker discovery of both diagnostic and therapeutic interest. Aptamer-based approaches are promising options for NSCLC early diagnosis and targeted therapy and may overcome the key obstacles of currently used therapeutic modalities, such as the high toxicity and patients' resistance. In this review, we highlight the most important applications of SELEX technology and aptamers for NSCLC handling.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Técnica SELEX de Producción de Aptámeros/métodos , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Nanoestructuras/química , ARN/química
4.
Faraday Discuss ; 205: 271-289, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28884170

RESUMEN

In this work, SERS-based microfluidic PDMS chips integrating silver-coated porous silicon membranes were used for the detection and quantitation of microRNAs (miRNAs), which consist of short regulatory non-coding RNA sequences typically over- or under-expressed in connection with several diseases such as oncogenesis. In detail, metal-dielectric nanostructures which provide noticeable Raman enhancements were functionalized according to a biological protocol, adapted and optimized from an enzyme-linked immunosorbent assay (ELISA), for the detection of miR-222. Two sets of experiments based on different approaches were designed and performed, yielding a critical comparison. In the first one, the labelled target miRNA is revealed through hybridization to a complementary thiolated DNA probe, immobilized on the silver nanoparticles. In the second one, the probe is halved into shorter strands (half1 and half2) that interact with the complementary miRNA in two steps of hybridization. Such an approach, taking advantage of the Raman labelling of half2, provides a label-free analysis of the target. After suitable optimisation of the procedures, two calibration curves allowing quantitative measurements were obtained and compared on the basis of the SERS maps acquired on the samples loaded with several miRNA concentrations. The selectivity of the two-step assay was confirmed by the detection of target miR-222 mixed with different synthetic oligos, simulating the hybridization interference coming from similar sequences in real biological samples. Finally, that protocol was applied to the analysis of miR-222 in cellular extracts using an optofluidic multichamber biosensor, confirming the potentialities of SERS-based microfluidics for early-cancer diagnosis.


Asunto(s)
MicroARNs/análisis , Nanoestructuras/química , Espectrometría Raman/métodos , Línea Celular Tumoral , Humanos , Dispositivos Laboratorio en un Chip , Límite de Detección , Nanopartículas del Metal/química , Hibridación de Ácido Nucleico , Plata/química
5.
Mol Ther ; 22(4): 828-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24566984

RESUMEN

Platelet-derived growth factor receptor ß (PDGFRß) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFRß. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFRß-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFRß ectodomain (Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFRß heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor-targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFRß-drug candidate with translational potential.


Asunto(s)
Aptámeros de Nucleótidos/uso terapéutico , Receptores ErbB/genética , Glioma/terapia , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Aptámeros de Nucleótidos/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/uso terapéutico , Glioma/genética , Glioma/patología , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/uso terapéutico , Transducción de Señal/genética
6.
Mol Ther ; 22(6): 1151-1163, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24441398

RESUMEN

While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , MicroARNs/genética , MicroARNs/farmacología , Neoplasias/patología , Neoplasias/terapia , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Masculino , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Neoplasias Experimentales , Especificidad de Órganos , Tirosina Quinasa del Receptor Axl
7.
Anal Bioanal Chem ; 405(2-3): 1025-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23099529

RESUMEN

MicroRNAs (miRNAs, miRs) are naturally occurring small RNAs (approximately 22 nucleotides in length) that have critical functions in a variety of biological processes, including tumorigenesis. They are an important target for detection technology for future medical diagnostics. In this paper we report an electrochemical method for miRNA detection based on paramagnetic beads and enzyme amplification. In particular, miR 222 was chosen as model sequence, because of its involvement in brain, lung, and liver cancers. The proposed bioassay is based on biotinylated DNA capture probes immobilized on streptavidin-coated paramagnetic beads. Total RNA was extracted from the cell sample, enriched for small RNA, biotinylated, and then hybridized with the capture probe on the beads. The beads were then incubated with streptavidin-alkaline phosphatase and exposed to the appropriate enzymatic substrate. The product of the enzymatic reaction was electrochemically monitored. The assay was finally tested with a compact microfluidic device which enables multiplexed analysis of eight different samples with a detection limit of 7 pmol L(-1) and RSD = 15 %. RNA samples from non-small-cell lung cancer and glioblastoma cell lines were also analyzed.


Asunto(s)
Bioensayo/métodos , Técnicas Electroquímicas/métodos , MicroARNs/química , Bioensayo/instrumentación , Línea Celular Tumoral , Técnicas Electroquímicas/instrumentación , Humanos , MicroARNs/genética
8.
Mol Ther Nucleic Acids ; 32: 111-126, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37020682

RESUMEN

The identification of new effective therapeutic options for non-small-cell lung cancer (NSCLC) represents a crucial challenge in oncology. Recent studies indicate that cancer-associated fibroblasts (CAFs) participate in tumor progression by establishing a favorable microenvironment that promotes cancer progression. Therefore, the development of strategies inhibiting the interplay between CAFs and cancer cells is considered a winning approach for the development of effective anti-cancer drugs. Among other factors, the signal transducer and activator of transcription-3 (STAT3) has been reported as a key mediator of CAF oncogenic actions, representing a promising therapeutic target. Here, we applied an aptamer-based conjugate (named Gint4.T-STAT3), containing a STAT3 siRNA linked to an aptamer binding and inhibiting the platelet-derived growth factor receptor (PDGFR)ß, to obtain STAT3-specific silencing and interfere with CAF pro-tumorigenic functions. We demonstrated that this molecule effectively delivers the STAT3 siRNA in NSCLC cells, and blocks CAF-induced cancer cell growth and migration and reduced spheroid dimension. In addition, we found that Gint4.T-STAT3 alters CAF phenotype, thus functioning as a double-acting molecule able to inhibit the entire tumor bulk. Our data provide a proof of principle for the targeting of CAF pro-tumor functions through an aptamer-based drug, and can open innovative horizons in NSCLC therapy.

9.
Nat Commun ; 14(1): 99, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609400

RESUMEN

DNA methylation is a fundamental epigenetic modification regulating gene expression. Aberrant DNA methylation is the most common molecular lesion in cancer cells. However, medical intervention has been limited to the use of broadly acting, small molecule-based demethylating drugs with significant side-effects and toxicities. To allow for targeted DNA demethylation, we integrated two nucleic acid-based approaches: DNMT1 interacting RNA (DiR) and RNA aptamer strategy. By combining the RNA inherent capabilities of inhibiting DNMT1 with an aptamer platform, we generated a first-in-class DNMT1-targeted approach - aptaDiR. Molecular modelling of RNA-DNMT1 complexes coupled with biochemical and cellular assays enabled the identification and characterization of aptaDiR. This RNA bio-drug is able to block DNA methylation, impair cancer cell viability and inhibit tumour growth in vivo. Collectively, we present an innovative RNA-based approach to modulate DNMT1 activity in cancer or diseases characterized by aberrant DNA methylation and suggest the first alternative strategy to overcome the limitations of currently approved non-specific hypomethylating protocols, which will greatly improve clinical intervention on DNA methylation.


Asunto(s)
Metilación de ADN , ARN , ARN/genética , ARN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética
10.
Front Mol Biosci ; 9: 956935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188221

RESUMEN

Hypoxia plays a crucial role in tumorigenesis and drug resistance, and it is recognised as a major factor affecting patient clinical outcome. Therefore, the detection of hypoxic areas within the tumour micro-environment represents a useful way to monitor tumour growth and patients' responses to treatments, properly guiding the choice of the most suitable therapy. To date, non-invasive hypoxia imaging probes have been identified, but their applicability in vivo is strongly limited due to an inadequate resistance to the low oxygen concentration and the acidic pH of the tumour micro-environment. In this regard, nucleic acid aptamers represent very powerful tools thanks to their peculiar features, including high stability to harsh conditions and a small size, resulting in easy and efficient tumour penetration. Here, we describe a modified cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach that allows the isolation of specific RNA aptamers for the detection of the hypoxic phenotype in breast cancer (BC) cells. We demonstrated the effectiveness of the proposed method in isolating highly stable aptamers with an improved and specific binding to hypoxic cells. To our knowledge, this is the first example of a cell-SELEX approach properly designed and modified to select RNA aptamers against hypoxia-related epitopes expressed on tumour cell surfaces. The selected aptamers may provide new effective tools for targeting hypoxic areas within the tumour with great clinical potential.

11.
Methods Mol Biol ; 2282: 31-42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928568

RESUMEN

Despite the therapeutic utility of small interfering RNA (siRNA) molecules, the development of a safe and reliable method to selectively target diseased organs and tissues is still a critical need for their translation to the clinic. Here we describe how nucleic acid-based aptamers against cell surface epitopes may be used to address this issue. We discuss the most recent examples and advances in the field of aptamer siRNA delivery and provide a fast and simple protocol for the design and generation of aptamer-siRNA chimeras. The described approach is based on the annealing of the targeting aptamer, and the antisense strand through "stick" complementary sequences elongated at their 3' end, and the subsequent paring with the sense strand. Such a protocol allows a modular non-covalent generation of the constructs and permits an efficient delivery of the siRNA moiety into aptamer target cells.


Asunto(s)
Aptámeros de Nucleótidos/genética , Técnicas de Transferencia de Gen , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/genética , Aptámeros de Nucleótidos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , ARN Interferente Pequeño/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proyectos de Investigación , Factor de Transcripción STAT3/metabolismo , Flujo de Trabajo
12.
Adv Drug Deliv Rev ; 177: 113930, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34403751

RESUMEN

Messenger RNAs (mRNAs) present a great potential as therapeutics for the treatment and prevention of a wide range of human pathologies, allowing for protein replacement, vaccination, cancer immunotherapy, and genomic engineering. Despite advances in the design of mRNA-based therapeutics, a key aspect for their widespread translation to clinic is the development of safe and effective delivery strategies. To this end, non-viral delivery systems including peptide-based complexes, lipidic or polymeric nanoparticles, and hybrid formulations are attracting growing interest. Despite displaying somewhat reduced efficacy compared to viral-based systems, non-viral carriers offer important advantages in terms of biosafety and versatility. In this review, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of non-viral systems. Challenges and future applications of this novel therapeutic modality are also discussed.


Asunto(s)
ARN Mensajero/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Humanos
13.
Mol Ther Nucleic Acids ; 23: 982-994, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33614245

RESUMEN

Breast cancer is a leading cause of cancer mortality in women. Despite advances in its management, the identification of new options for early-stage diagnosis and therapy of this tumor still represents a crucial challenge. Increasing evidence indicates that extracellular vesicles called exosomes may have great potential as early diagnostic biomarkers and regulators of many cancers, including breast cancer. Therefore, exploiting molecules able to selectively recognize them is of great interest. Here, we developed a novel differential SELEX strategy, called Exo-SELEX, to isolate nucleic acid aptamers against intact exosomes derived from primary breast cancer cells. Among the obtained sequences, we optimized a high-affinity aptamer (ex-50.T) able to specifically recognize exosomes from breast cancer cells or patient serum samples. Furthermore, we demonstrated that the ex.50.T is a functional inhibitor of exosome cellular uptake and antagonizes cancer exosome-induced cell migration in vitro. This molecule provides an innovative tool for the specific exosome detection and the development of new therapeutic approaches for breast cancer.

14.
Cancers (Basel) ; 13(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34680368

RESUMEN

The transmembrane glycoprotein cluster of differentiation 19 (CD19) is a B cell-specific surface marker, expressed on the majority of neoplastic B cells, and has recently emerged as a very attractive biomarker and therapeutic target for B-cell malignancies. The development of safe and effective ligands for CD19 has become an important need for the development of targeted conventional and immunotherapies. In this regard, aptamers represent a very interesting class of molecules. Additionally referred to as 'chemical antibodies', they show many advantages as therapeutics, including low toxicity and immunogenicity. Here, we isolated a nuclease-resistant RNA aptamer binding to the human CD19 glycoprotein. In order to develop an aptamer also useful as a carrier for secondary reagents, we adopted a cell-based SELEX (Systematic Evolution of Ligands by EXponential Enrichment) protocol adapted to isolate aptamers able to internalise upon binding to their cell surface target. We describe a 2'-fluoro pyrimidine modified aptamer, named B85.T2, which specifically binds to CD19 and shows an exquisite stability in human serum. The aptamer showed an estimated dissociation constant (KD) of 49.9 ± 13 nM on purified human recombinant CD19 (rhCD19) glycoprotein, a good binding activity on human B-cell chronic lymphocytic leukaemia cells expressing CD19, and also an effective and rapid cell internalisation, thus representing a promising molecule for CD19 targeting, as well as for the development of new B-cell malignancy-targeted therapies.

15.
Cancers (Basel) ; 12(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466591

RESUMEN

Tumor mass consists of a complex ensemble of malignant cancer cells and a wide variety of resident and infiltrating cells, secreted factors, and extracellular matrix proteins that are referred as tumor microenvironment (TME). Cancer associated fibroblasts (CAFs) are key TME components that support tumor growth, generating a physical barrier against drugs and immune infiltration, and contributing to regulate malignant progression. Thus, it is largely accepted that therapeutic approaches aimed at hampering the interactions between tumor cells and CAFs can enhance the effectiveness of anti-cancer treatments. In this view, nucleic acid therapeutics have emerged as promising molecules. Here, we summarize recent knowledge about their role in the regulation of CAF transformation and tumor-promoting functions, highlighting their therapeutic utility and challenges.

16.
Cancers (Basel) ; 12(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486489

RESUMEN

An important drawback in the management of glioblastoma (GBM) patients is the frequent relapse upon surgery and therapy. A likely explanation is that conventional therapies poorly affect a small population of stem-like cancer cells (glioblastoma stem cells, GSCs) that remain capable of repopulating the tumour mass. Indeed, the development of therapeutic strategies able to hit GSCs while reducing the tumour burden has become an important challenge to increase a patient's survival. The signal transducer and activator of transcription-3 (STAT3) has been reported to play a pivotal role in maintaining the tumour initiating capacity of the GSC population. Therefore, in order to impair the renewal and propagation of the PDGFRß-expressing GSC population, here we took advantage of the aptamer-siRNA chimera (AsiC), named Gint4.T-STAT3, that we previously have shown to efficiently antagonize STAT3 in subcutaneous PDGFRß-positive GBM xenografts. We demonstrate that the aptamer conjugate is able to effectively and specifically prevent patient-derived GSC function and expansion. Moreover, because of the therapeutic potential of using miR-10b inhibitors and of the broad expression of the Axl receptor in GBM, we used the GL21.T anti-Axl aptamer as the targeting moiety for anti-miR-10b, showing that, in combination with the STAT3 AsiC, the aptamer-miR-10b antagonist treatment further enhances the inhibition of GSC sphere formation. Our results highlight the potential to use a combined approach with targeted RNA therapeutics to inhibit GBM tumour dissemination and relapse.

17.
Int J Biol Sci ; 16(7): 1238-1251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174798

RESUMEN

microRNAs (miRNAs) are small non-coding RNAs acting as negative regulators of gene expression and involved in tumor progression. We recently showed that inhibition of the pro-metastatic miR-214 and simultaneous overexpression of its downstream player, the anti-metastatic miR-148b, strongly reduced metastasis formation. To explore the therapeutic potential of miR-148b, we generated a conjugated molecule aimed to target miR-148b expression selectively to tumor cells. Precisely, we linked miR-148b to GL21.T, an aptamer able to specifically bind to AXL, an oncogenic tyrosine kinase receptor highly expressed on cancer cells. Axl-148b conjugate was able to inhibit migration and invasion of AXL-positive, but not AXL-negative, cancer cells, demonstrating high efficacy and selectivity in vitro. In parallel, expression of ALCAM and ITGA5, two miR-148b direct targets, was reduced. More importantly, axl-148b chimeric aptamers were able to inhibit formation and growth of 3D-mammospheres, to induce necrosis and apoptosis of treated xenotransplants, as well as to block breast cancer and melanoma dissemination and metastatization in mice. Relevantly, axl aptamer acted as specific delivery tool for miR-148b, but it also actively contributed to inhibit metastasis formation, together with miR-148b. In conclusion, our data show that axl-148b conjugate is able to inhibit tumor progression in an axl- and miR-148b-dependent manner, suggesting its potential development as therapeutic molecule.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/metabolismo , Melanoma/fisiopatología , MicroARNs/metabolismo , Células Neoplásicas Circulantes , Células Tumorales Cultivadas/metabolismo , Células Tumorales Cultivadas/fisiología
18.
Mol Ther Nucleic Acids ; 18: 981-990, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31778956

RESUMEN

B cell maturation antigen is highly expressed on malignant plasma cells in human multiple myeloma and has recently emerged as a very promising target for therapeutic interventions. Nucleic-acid-based aptamers are small oligonucleotides with high selective targeting properties and functional advantages over monoclonal antibodies, as both diagnostic and therapeutic tools. Here, we describe the generation of the first-ever-described nuclease resistant RNA aptamer selectively binding to B cell maturation antigen. We adopted a modified cell-based systematic evolution of ligands by exponential enrichment approach allowing the enrichment for internalizing aptamers. The selected 2'Fluoro-Pyrimidine modified aptamer, named apt69.T, effectively and selectively bound B cell maturation antigen-expressing myeloma cells with rapid and efficient internalization. Interestingly, apt69.T inhibited APRIL-dependent nuclear factor κB (NF-κB) pathway in vitro. Moreover, the aptamer was conjugated to microRNA-137 (miR-137) and anti-miR-222, demonstrating high potential against tumor cells. In conclusion, apt69.T is a novel tool suitable for direct targeting and delivery of therapeutics to B cell maturation antigen-expressing myeloma cells.

19.
Mol Ther Nucleic Acids ; 17: 256-263, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31276956

RESUMEN

Non-small-cell lung cancer (NSCLC) accounts for 85%-90% of all cases of lung cancer that is the most deadly type of cancer. Despite advances in chemotherapy and radiotherapy, severe side effects and frequent drug resistance limit the success of the treatments, and the identification of new therapeutic options still represents a crucial challenge. Here, we provide the evidence for the therapeutic potential of an aptamer-microRNA (miR) complex (AmiC) composed by an aptamer (GL21.T), able to bind and antagonize the oncogenic receptor Axl, and the miR-137, downregulated in lung cancer and involved in cell survival and proliferation. We found that, when applied to Axl-expressing NSCLC cancer cells, the complex is effectively internalized, increasing miR cellular levels and downregulating miR targets. Most importantly, the complex combines the inhibitory function of the GL21.T aptamer and miR-137, leading to a negative impact on NSCLC migration and growth. The described AmiC thus represents a promising tool for the development of new therapeutic approaches for NSCLC.

20.
Genes (Basel) ; 9(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384431

RESUMEN

Nucleic acid-based aptamers have emerged as efficient delivery carriers of therapeutics. Thanks to their unique features, they can be, to date, considered one of the best targeting moieties, allowing the specific recognition of diseased cells and avoiding unwanted off-target effects on healthy tissues. In this review, we revise the most recent contributes on bispecific and multifunctional aptamer therapeutic chimeras. We will discuss key examples of aptamer-mediated delivery of nucleic acid and peptide-based therapeutics underlying their great potentiality and versatility. Achieved objectives and challenges will be highlighted as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA