Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Top Microbiol Immunol ; 436: 69-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243840

RESUMEN

Highly conserved from yeast to mammals, vacuolar protein sorting 34 (Vps34) is the sole member of the third class of the phosphoinositide 3-kinase (PI3K) family. By producing phosphatidylinositol-3-monophosphate (PtdIns3P) through its scaffolding function essential for the catalytic lipid activity, Vps34 regulates endosomal trafficking, autophagy, phagocytosis, and nutrient-sensing signaling. The development of genetically modified mouse models and specific inhibitors has largely contributed over the past ten years to a better understanding of Vps34 functions in biological and physiological processes in mammals and, ultimately, its potential implications and targeting in human diseases. This chapter will summarize the current knowledge of the structure and regulation of Vps34 as well as its cellular and organismal functions.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Animales , Autofagia , Biología , Endosomas/metabolismo , Humanos , Mamíferos/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Saccharomyces cerevisiae
2.
Arterioscler Thromb Vasc Biol ; 42(8): 987-1004, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35708031

RESUMEN

BACKGROUND: Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets. METHODS: For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets. RESULTS: We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML (transient receptor potential mucolipin) 1 and TPC (two pore segment channel) 2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation. CONCLUSIONS: These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.


Asunto(s)
Megacariocitos , Fosfatidilinositol 3-Quinasas , Fosfatidilinositoles , Animales , Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Humanos , Megacariocitos/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo
3.
Res Pract Thromb Haemost ; 4(4): 491-499, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32548550

RESUMEN

Phosphoinositides are lipid second messengers regulating in time and place the formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking, and cytoskeleton/membrane dynamics. One of these lipids, phosphatidylinositol 3 monophosphate (PtdIns3P), is present in small amounts in mammalian cells and is involved in the control of endocytic/endosomal trafficking and in autophagy. Its metabolism is finely regulated by specific kinases and phosphatases including class II phosphoinositide 3-kinases (PI3KC2s) and the class III PI3K, Vps34. Recently, PtdIns3P has emerged as an important regulator of megakaryocyte/platelet structure and functions. Here, we summarize the current knowledge in the role of different pools of PtdIns3P regulated by class II and III PI3Ks in platelet production and thrombosis. Potential new antithrombotic therapeutic perspectives based on the use of inhibitors targeting specifically PtdIns3P-metabolizing enzymes will also be discussed. Finally, we provide report of new research in this area presented at the International Society of Thrombosis and Haemostasis 2019 Annual Congress.

4.
Adv Biol Regul ; 75: 100664, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604685

RESUMEN

Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, ß and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.


Asunto(s)
Plaquetas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal , Trombopoyesis , Trombosis/metabolismo , Animales , Plaquetas/patología , Humanos , Transporte de Proteínas , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA