RESUMEN
Coherent optical driving in quantum solids is emerging as a research frontier, with many reports of interesting non-equilibrium quantum phases1-4 and transient photo-induced functional phenomena such as ferroelectricity5,6, magnetism7-10 and superconductivity11-14. In high-temperature cuprate superconductors, coherent driving of certain phonon modes has resulted in a transient state with superconducting-like optical properties, observed far above their transition temperature Tc and throughout the pseudogap phase15-18. However, questions remain on the microscopic nature of this transient state and how to distinguish it from a non-superconducting state with enhanced carrier mobility. For example, it is not known whether cuprates driven in this fashion exhibit Meissner diamagnetism. Here we examine the time-dependent magnetic field surrounding an optically driven YBa2Cu3O6.48 crystal by measuring Faraday rotation in a magneto-optic material placed in the vicinity of the sample. For a constant applied magnetic field and under the same driving conditions that result in superconducting-like optical properties15-18, a transient diamagnetic response was observed. This response is comparable in size with that expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χv of order -0.3. This value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the drive.
RESUMEN
In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases1-7. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic and chemical constraints8. Here we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that shows only partial orbital polarization, an unsaturated low-temperature magnetic moment and a suppressed Curie temperature, Tc = 27 K (refs. 9-13). The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq > 80 K, nearly three times the thermodynamic transition temperature. We interpret these effects as a consequence of the light-induced dynamical changes to the quasi-degenerate Ti t2g orbitals, which affect the magnetic phase competition and fluctuations found in the equilibrium state14-20. Notably, the light-induced high-temperature ferromagnetism discovered in our work is metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.
RESUMEN
Crystal lattice fluctuations, which are known to influence phase transitions of quantum materials in equilibrium, are also expected to determine the dynamics of light-induced phase changes. However, they have only rarely been explored in these dynamical settings. Here we study the time evolution of lattice fluctuations in the quantum paraelectric SrTiO3, in which mid-infrared drives have been shown to induce a metastable ferroelectric state. Crucial in these physics is the competition between polar instabilities and antiferrodistortive rotations, which in equilibrium frustrate the formation of long-range ferroelectricity. We make use of high-intensity mid-infrared optical pulses to resonantly drive the Ti-O-stretching mode at 17 THz, and we measure the resulting change in lattice fluctuations using time-resolved X-ray diffuse scattering at a free-electron laser. After a prompt increase, we observe a long-lived quench in R-point antiferrodistortive lattice fluctuations. Their enhancement and reduction are theoretically explained by considering the fourth-order nonlinear phononic interactions to the driven optical phonon and third-order coupling to lattice strain, respectively. These observations provide a number of testable hypotheses for the physics of light-induced ferroelectricity.
RESUMEN
The interplay between charge order and superconductivity remains one of the central themes of research in quantum materials. In the case of cuprates, the coupling between striped charge fluctuations and local electromagnetic fields is especially important, as it affects transport properties, coherence, and dimensionality of superconducting correlations. Here, we study the emission of coherent terahertz radiation in single-layer cuprates of the La2-xBaxCuO4 family, for which this effect is expected to be forbidden by symmetry. We find that emission vanishes for compounds in which the stripes are quasi-static but is activated when c-axis inversion symmetry is broken by incommensurate or fluctuating charge stripes, such as in La1.905Ba0.095CuO4 and in La1.845Ba0.155CuO4. In this case, terahertz radiation is emitted by surface Josephson plasmons, which are generally dark modes, but couple to free space electromagnetic radiation because of the stripe modulation.
RESUMEN
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
RESUMEN
The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity. Nonlinear excitation of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc (refs 4-6). This effect was accompanied by the disruption of competing charge-density-wave correlations, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results.
RESUMEN
We describe a mid-infrared pump - terahertz-probe setup based on a CO2 laser seeded with 10.6 µm wavelength pulses from an optical parametric amplifier, itself pumped by a Ti:Al2O3 laser. The output of the seeded CO2 laser produces high power pulses of nanosecond duration, which are synchronized to the femtosecond laser. These pulses can be tuned in pulse duration by slicing their front and back edges with semiconductor-plasma mirrors irradiated by replicas of the femtosecond seed laser pulses. Variable pulse lengths from 5 ps to 1.3 ns are achieved, and used in mid-infrared pump, terahertz-probe experiments with probe pulses generated and electro-optically sampled by the femtosecond laser.
RESUMEN
Resonant optical excitation of certain molecular vibrations in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br has been shown to induce transient superconductinglike optical properties at temperatures far above equilibrium T_{c}. Here, we report experiments across the bandwidth-tuned phase diagram of this class of materials, and study the Mott insulator κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl and the metallic compound κ-(BEDT-TTF)_{2}Cu(NCS)_{2}. We find nonequilibrium photoinduced superconductivity only in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br, indicating that the proximity to the Mott insulating phase and possibly the presence of preexisting superconducting fluctuations are prerequisites for this effect.
RESUMEN
We report on the first subpicometer interferometer flown in space. It was part of ESA's Laser Interferometer Space Antenna (LISA) Pathfinder mission and performed the fundamental measurement of the positional and angular motion of two free-falling test masses. The interferometer worked immediately, stably, and reliably from switch on until the end of the mission with exceptionally low residual noise of 32.0_{-1.7}^{+2.4} fm/sqrt[Hz], significantly better than required. We present an upper limit for the sensor performance at millihertz frequencies and a model for the measured sensitivity above 200 mHz.
RESUMEN
We use coherent midinfrared optical pulses to resonantly excite large-amplitude oscillations of the Si-C stretching mode in silicon carbide. When probing the sample with a second pulse, we observe parametric optical gain at all wavelengths throughout the reststrahlen band. This effect reflects the amplification of light by phonon-mediated four-wave mixing and, by extension, of optical-phonon fluctuations. Density functional theory calculations clarify aspects of the microscopic mechanism for this phenomenon. The high-frequency dielectric permittivity and the phonon oscillator strength depend quadratically on the lattice coordinate; they oscillate at twice the frequency of the optical field and provide a parametric drive for the lattice mode. Parametric gain in phononic four-wave mixing is a generic mechanism that can be extended to all polar modes of solids, as a means to control the kinetics of phase transitions, to amplify many-body interactions or to control phonon-polariton waves.
RESUMEN
In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase diagrams with regions containing complex, highly entangled states of matter. In this work, we study the driven two-rung triangular Hubbard model and evolve these states out of equilibrium, observing how the interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the system, causing the available particle-hole degrees of freedom to manifest uniform long-range order. We discuss implications of our results for a recent experiment on photoinduced superconductivity in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br molecules.
RESUMEN
Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.
RESUMEN
Superconductivity often emerges in proximity of other symmetry-breaking ground states, such as antiferromagnetism or charge-density-wave (CDW) order. However, the subtle interrelation of these phases remains poorly understood, and in some cases even the existence of short-range correlations for superconducting compositions is uncertain. In such circumstances, ultrafast experiments can provide new insights by tracking the relaxation kinetics following excitation at frequencies related to the broken-symmetry state. Here, we investigate the transient terahertz conductivity of BaPb1-x Bi x O3--a material for which superconductivity is "adjacent" to a competing CDW phase--after optical excitation tuned to the CDW absorption band. In insulating BaBiO3 we observed an increase in conductivity and a subsequent relaxation, which are consistent with quasiparticles injection across a rigid semiconducting gap. In the doped compound BaPb0.72Bi0.28O3 (superconducting below TC = 7 K), a similar response was also found immediately above TC This observation evidences the presence of a robust gap up to T [Formula: see text] 40 K, which is presumably associated with short-range CDW correlations. A qualitatively different behavior was observed in the same material for [Formula: see text] 40 K. Here, the photoconductivity was dominated by an enhancement in carrier mobility at constant density, suggestive of melting of the CDW correlations rather than excitation across an optical gap. The relaxation displayed a temperature-dependent, Arrhenius-like kinetics, suggestive of the crossing of a free-energy barrier between two phases. These results support the existence of short-range CDW correlations above TC in underdoped BaPb1-x Bi x O3, and provide information on the dynamical interplay between superconductivity and charge order.
RESUMEN
We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of "impulse" forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in which this balancing force is applied continuously, with the advantage that the acceleration noise during free fall is measured in the absence of the actuation force, thus eliminating associated noise and force calibration errors. The differential acceleration noise measurement presented here with the free-fall mode agrees with noise measured with the continuous actuation scheme, representing an important and independent confirmation of the LPF result. An additional measurement with larger actuation forces also shows that the technique can be used to eliminate actuation noise when this is a dominant factor.
RESUMEN
Optical excitation of stripe-ordered La_{2-x}Ba_{x}CuO_{4} has been shown to transiently enhance superconducting tunneling between the CuO_{2} planes. This effect was revealed by a blueshift, or by the appearance of a Josephson plasma resonance in the terahertz-frequency optical properties. Here, we show that this photoinduced state can be strengthened by the application of high external magnetic fields oriented along the c axis. For a 7 T field, we observe up to a tenfold enhancement in the transient interlayer phase correlation length, accompanied by a twofold increase in the relaxation time of the photoinduced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically enhanced interlayer coupling in La_{2-x}Ba_{x}CuO_{4} does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photoinduced state may emerge from activated tunneling between optically excited stripes in adjacent planes.
RESUMEN
In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 µHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05) fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10 fm s^{-2}/sqrt[Hz] at 20 µHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.
RESUMEN
We report on the generation of high-energy (1.9 µJ) far-infrared pulses tunable between 4 and 18 THz frequency. Emphasis is placed on tunability and on minimizing the bandwidth of these pulses to less than 1 THz, as achieved by difference-frequency mixing of two linearly chirped near-infrared pulses in the organic nonlinear crystal DSTMS. As the two near-infrared pulses are derived from amplification of the same white light continuum, their carrier envelope phase fluctuations are mutually correlated, and hence the difference-frequency THz field exhibits absolute phase stability. This source opens up new possibilities for the control of condensed matter and chemical systems by selective excitation of low-energy modes in a frequency range that has, to date, been difficult to access.
RESUMEN
We report on the generation of narrowband carrier-envelope phase stable mid-infrared (MIR) pulses between 10 and 15 µm. High pulse energies and narrow bandwidths are required for the selective nonlinear excitation of collective modes of matter that is not possible with current sources. We demonstrate bandwidths of <2% at 12.5 µm wavelength through difference frequency generation between two near-infrared (NIR) pulses, which are linearly chirped. We obtain a reduction in bandwidth by one order of magnitude, compared to schemes that make use of transform-limited NIR pulses. The wavelength of the narrowband MIR pulse can be tuned by changing the optical delay between the two chirped NIR pulses.
RESUMEN
We report on the demonstration of ultrafast optical reversal of the ferroelectric polarization in LiNbO_{3}. Rather than driving the ferroelectric mode directly, we couple to it indirectly by resonant excitation of an auxiliary high-frequency phonon mode with femtosecond midinfrared pulses. Because of strong anharmonic coupling between these modes, the atoms are directionally displaced along the ferroelectric mode and the polarization is transiently reversed, as revealed by time-resolved, phase-sensitive, second-harmonic generation. This reversal can be induced in both directions, a key prerequisite for practical applications.
RESUMEN
We study the response of the one-dimensional charge density wave in K_{0.3}MoO_{3} to different types of excitation with femtosecond optical pulses. We compare direct excitation of the lattice at midinfrared frequencies with injection of quasiparticles across the low energy charge density wave gap and with charge transfer excitation in the near infrared. For all three cases, we observe a fluence threshold above which the amplitude-mode oscillation frequency is softened and the mode becomes increasingly damped. We show that all the data can be collapsed onto a universal curve in which the melting of the charge density wave occurs abruptly at a critical lattice excursion. These data highlight the existence of a universal stability limit for a charge density wave, reminiscent of the Lindemann criterion for the melting of a crystal lattice.